RESUMEN
Green algae usually assigned to the genus Oophila are known to colonize egg capsules of amphibian egg masses across the Nearctic and Palearctic regions. We study the phylogenetic relationships of these algae using a phylotranscriptomic data set of 76 protein-coding single-copy nuclear genes. Our data set includes novel RNAseq data for six amphibian-associated and five free-living green algae, and draft genomes of two of the latter. Within the Oophila clade (nested within Moewusinia), we find samples from two European frogs (Rana dalmatina and R. temporaria) closely related to those of the North American frog R. aurora (Oophila subclade III). An isolate from the North American R. sylvatica (subclade IV) appears to be sister to the Japanese isolate from the salamander Hynobius nigrescens (subclade J1), and subclade I algae from Ambystoma maculatum are sister to all other lineages in the Oophila clade. Two free-living algae (Chlamydomonas nasuta and Cd. pseudogloeogama) are nested within the Oophila clade, and a strain of the type species of Chlorococcum (Cc. infusionum) is related to this assemblage. Our phylotranscriptomic tree suggests that recognition of different species within the Oophila clade ("clade B" of earlier studies) is warranted, and calls for a comprehensive taxonomic revision of Moewusinia.
Asunto(s)
Filogenia , Animales , Óvulo , Transcriptoma , Chlorophyta/genética , Chlorophyta/clasificación , Ranidae/genética , Ranidae/clasificación , Anfibios/genética , Anfibios/clasificaciónRESUMEN
The American horseshoe crab, Limulus polyphemus, excretes nitrogenous waste in the form of toxic ammonia across their book gills. The mechanism of this branchial excretion is yet unknown. In the current study, two isoforms of a novel ammonia transporter, LpHIAT1α and LpHIAT1ß, have been identified in L. polyphemus. Both isoforms have 12 predicted transmembrane regions and share 82.7% of amino acid identity to each other, and 77-86% amino acid homology to HIAT1 found in fish and crustaceans. In L. polyphemus, both isoforms were expressed in the gills, coxal glands, and brain. Slightly higher mRNA expression levels of LpHIAT1α were observed in the peripheral mitochondria-poor region of the gill (PMPA), central mitochondria-rich region of the gill (CMRA), and brain compared to the LpHIAT1ß isoform. A functional expression analysis of LpHIAT1α and LpHIAT1ß in Xenopus laevis oocytes resulted in a significantly lower uptake of the radiolabeled ammonia analogue 3H-methylamine when compared to controls, indicating an ammonia excretory function of the proteins. Exposure to elevated environmental ammonia (HEA, 1 mmol l-1 NH4Cl) caused an increase in mRNA expression of LpHIAT1ß in the ion-conductive ventral gill half. High mRNA expression of both isoforms in the brain, and the observation that LpHIAT1α and LpHIAT1ß likely mediate cellular ammonia excretion, suggests that these highly conserved ammonia transporters have an important housekeeping function in cellular ammonia elimination.
Asunto(s)
Amoníaco , Cangrejos Herradura , Animales , Amoníaco/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Aminoácidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Branquias/metabolismoRESUMEN
Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.
Asunto(s)
Braquiuros , Nephropidae , Animales , Nephropidae/genética , Concentración de Iones de Hidrógeno , Branquias/metabolismo , Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Agua de Mar/química , Proteínas de Transporte de Membrana/metabolismo , Braquiuros/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.
Asunto(s)
Chlorophyta , Eucariontes , Animales , Chlorophyta/genética , Código de Barras del ADN Taxonómico , Filogenia , RanidaeRESUMEN
AIM: To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS: Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS: Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION: CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Asunto(s)
Amoníaco , Dióxido de Carbono , Animales , Humanos , Dióxido de Carbono/metabolismo , Amoníaco/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aminoácidos , MetilaminasRESUMEN
Heterotrophic protists are key components of marine ecosystems. They act as controllers of bacterial and microphytobenthos production and contribute significantly to the carbon flux to higher trophic levels. Still, metabarcoding studies on benthic protist communities are much less frequent than for planktonic organisms. Especially in the Baltic Sea, representing the largest brackish water environment on earth, so far, no extensive metabarcoding studies have been conducted to assess the diversity of benthic protists in this unique and diverse habitat. This study aims to give first insights into the diversity of benthic protist communities in two different regions of the Baltic Sea, Fehmarnbelt, and Oderbank. Using amplicon sequencing of the 18S rDNA V9 region of over 100 individual sediment samples, we were able to show significant differences in the community composition between the two regions and to give insights into the vertical distribution of protists within the sediment (0-20 cm). The results indicate that the differences in community composition in the different regions might be explained by several abiotic factors such as salinity and water depth, but are also influenced by methodological aspects such as differences between DNA and RNA results.
RESUMEN
The orphan transporter hippocampus-abundant transcript 1 (Hiat1) was first identified in the mammalian brain. Its specific substrate specificity, however, has not been investigated to date. Here, we identified and analyzed Hiat1 in a crustacean, the green crab Carcinus maenas. Our phylogenetic analysis showed that Hiat1 protein is conserved at a considerable level between mammals and this invertebrate (ca. 78% identical and conserved amino acids). Functional expression of Carcinus maenas Hiat1 in Xenopus laevis oocytes demonstrated the capability to transport ammonia (likely NH4+) in a sodium-dependent manner. Furthermore, applying quantitative polymerase chain reaction, our results indicated a physiological role for Carcinus maenas Hiat1 in ammonia homeostasis, as mRNA abundance increased in posterior gills in response to elevated circulating hemolymph ammonia upon exposure to high environmental ammonia. Its ubiquitous mRNA expression pattern also suggests an essential role in general cellular detoxification of ammonia. Overall, our results introduce a new ubiquitously expressed ammonia transporter, consequently demanding revision of our understanding of ammonia handling in key model systems from mammalian kidneys to crustacean and fish gills.
Asunto(s)
Amoníaco , Braquiuros , Animales , Amoníaco/metabolismo , Filogenia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Branquias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Braquiuros/genética , Mamíferos/metabolismoRESUMEN
The heterotrophic nanoflagellate genus Cafeteria has been found to be ubiquitously distributed in the marine realm. We could isolate and cultivate ten strains morphologically similar to Cafeteria from various types of environment, including the deep sea, brackish waters and also meso- to hypersaline inland waters. Molecular analyses (18S rDNA, 28S rDNA) of newly isolated strains from the marine realm resulted in four more Cafeteria burkhardae strains from the deep North Atlantic Ocean and one new species (C. baltica sp. nov.) isolated from brackish waters of the Baltic Sea. Two strains isolated from the Atacama Desert belong to two new species (C. atacamiensis sp. nov. and C. paulosalfera sp. nov.), one other strain could not yet be assigned. Morphological characterizations of these strains obtained by high resolution microscopy revealed only small differences to already described species. However, molecular analyses showed a clear separation of the different Cafeteria species. We exposed several strains to different salt concentrations (2-150 PSU) to investigate their salinity tolerance. Only the marine strains of C. burkhardae were able to survive at salinities up to 150 PSU, indicating the possibility to inhabit a broader spectrum of habitats including hypersaline environments besides the deep sea with its high hydrostatic pressure.