Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
PLoS Pathog ; 16(4): e1008456, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282850

RESUMEN

Leishmania donovani causes visceral leishmaniasis (VL), which is typically fatal without treatment. There is substantial variation between individuals in rates of disease progression, response to treatment and incidence of post-treatment sequelae, specifically post-kala-azar dermal leishmaniasis (PKDL). Nevertheless, the majority of infected people are asymptomatic carriers. Hamsters and mice are commonly used as models of fatal and non-fatal VL, respectively. Host and parasite genetics are likely to be important factors, but in general the reasons for heterogeneous disease presentation in humans and animal models are poorly understood. Host microbiota has become established as a factor in cutaneous forms of leishmaniasis but this has not been studied in VL. We induced intestinal dysbiosis in mice and hamsters by long-term treatment with broad-spectrum antibiotics in their drinking water. There were no significant differences in disease presentation in dysbiotic mice. In contrast, dysbiotic hamsters infected with L. donovani had delayed onset and progression of weight loss. Half of control hamsters had a rapid progression phenotype compared with none of the ABX-treated animals and the nine-month survival rate was significantly improved compared to untreated controls (40% vs. 10%). Antibiotic-treated hamsters also had significantly less severe hepatosplenomegaly, which was accompanied by a distinct cytokine gene expression profile. The protective effect was not explained by differences in parasite loads or haematological profiles. We further found evidence that the gut-liver axis is a key aspect of fatal VL progression in hamsters, including intestinal parasitism, bacterial translocation to the liver, malakoplakia and iron sequestration, none of which occurred in non-progressing murine VL. Diverse bacterial genera were cultured from VL affected livers, of which Rodentibacter was specifically absent from ABX-treated hamsters, indicating this pathobiont may play a role in promoting disease progression. The results provide experimental support for antibiotic prophylaxis against secondary bacterial infections as an adjunct therapy in human VL patients.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/prevención & control , Coinfección/prevención & control , Parasitosis Intestinales/parasitología , Leishmaniasis Visceral/parasitología , Animales , Profilaxis Antibiótica , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Coinfección/microbiología , Cricetinae , Progresión de la Enfermedad , Femenino , Microbioma Gastrointestinal , Humanos , Leishmania donovani/fisiología , Leishmaniasis Visceral/complicaciones , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Simbiosis
3.
J Immunol ; 200(1): 196-208, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158417

RESUMEN

Reactive oxygen species (ROS) produced by NADPH phagocyte oxidase isoform (NOX2) are critical for the elimination of intracellular pathogens in many infections. Despite their importance, the role of ROS following infection with the eukaryotic pathogen Leishmania has not been fully elucidated. We addressed the role of ROS in C57BL/6 mice following intradermal infection with Leishmania amazonensis. Despite equivalent parasite loads compared with wild-type (WT) mice, mice deficient in ROS production by NOX2 due to the absence of the gp91 subunit (gp91phox-/-) had significantly more severe pathology in the later stages of infection. Pathology in gp91phox-/- mice was not associated with alterations in CD4+ T cell-mediated immunity but was preceded by enhanced neutrophil accumulation at the dermal infection site. Ex vivo analysis of infected versus uninfected neutrophils revealed a deficiency in infection-driven apoptosis in gp91phox-/- mice versus WT mice. gp91phox-/- mice presented with higher percentages of healthy or necrotic neutrophils but lower percentages of apoptotic neutrophils at early and chronic time points. In vitro infection of gp91phox-/- versus WT neutrophils also revealed reduced apoptosis and CD95 expression but increased necrosis in infected cells at 10 h postinfection. Provision of exogenous ROS in the form of H2O2 reversed the necrotic phenotype and restored CD95 expression on infected gp91phox-/- neutrophils. Although ROS production is typically viewed as a proinflammatory event, our observations identify the importance of ROS in mediating appropriate neutrophil apoptosis and the importance of apoptosis in inflammation and pathology during chronic infection.


Asunto(s)
Inflamación/inmunología , Leishmania/inmunología , Leishmaniasis/inmunología , NADPH Oxidasa 2/metabolismo , Neutrófilos/inmunología , Animales , Apoptosis , Movimiento Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , Carga de Parásitos , Especies Reactivas de Oxígeno/metabolismo , Receptor fas/metabolismo
4.
PLoS Pathog ; 13(6): e1006479, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28666021

RESUMEN

Inflammatory monocytes can be manipulated by environmental cues to perform multiple functions. To define the role of monocytes during primary or secondary infection with an intra-phagosomal pathogen we employed Leishmania major-red fluorescent protein (RFP) parasites and multi-color flow cytometry to define and enumerate infected and uninfected inflammatory cells in the skin. During primary infection, infected monocytes had altered maturation and were the initial mononuclear host cell for parasite replication. In contrast, at a distal site of secondary infection in mice with a healed but persistent primary infection, this same population rapidly produced inducible nitric oxide synthase (iNOS) in an IFN-γ dependent manner and was critical for parasite killing. Maturation to a dendritic cell-like phenotype was not required for monocyte iNOS-production, and enhanced monocyte recruitment correlated with IFN-γ dependent cxcl10 expression. In contrast, neutrophils appeared to be a safe haven for parasites in both primary and secondary sites. Thus, inflammatory monocytes play divergent roles during primary versus secondary infection with an intra-phagosomal pathogen.


Asunto(s)
Coinfección/microbiología , Leishmania major , Leishmaniasis Cutánea/inmunología , Monocitos/microbiología , Fagosomas/metabolismo , Piel/microbiología , Animales , Antígenos Ly/inmunología , Coinfección/inmunología , Células Dendríticas/metabolismo , Femenino , Inflamación/microbiología , Leishmaniasis Cutánea/parasitología , Ratones Transgénicos , Monocitos/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fagosomas/inmunología , Receptores CCR2/inmunología , Receptores de Interleucina-8A/inmunología
5.
Eur J Immunol ; 46(4): 897-911, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26689285

RESUMEN

Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1ß mRNA and IL-1ß-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1ß or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1ß might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1ß by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1ß, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.


Asunto(s)
Proteínas Portadoras/genética , Interleucina-1beta/genética , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Animales , Caspasa 1/genética , Caspasas/genética , Caspasas Iniciadoras , Modelos Animales de Enfermedad , Humanos , Interleucina-17/genética , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/parasitología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Mensajero/biosíntesis , Receptores de Citocinas/genética , Receptores de Interleucina , Receptores Tipo I de Interleucina-1/genética , Células TH1/inmunología
6.
J Immunol ; 195(8): 3816-27, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371247

RESUMEN

Visceral leishmaniasis (VL) is a fatal disease of the internal organs caused by the eukaryotic parasite Leishmania. Control of VL would best be achieved through vaccination. However, this has proven to be difficult partly because the correlates of protective immunity are not fully understood. In contrast, protective immunity against nonfatal cutaneous leishmaniasis (CL) is well defined and mediated by rapidly recruited, IFN-γ-producing Ly6C(+)CD4(+) T cells at the dermal challenge site. Protection against CL is best achieved by prior infection or live vaccination with Leishmania major, termed leishmanization. A long-standing question is whether prior CL or leishmanization can protect against VL. Employing an intradermal challenge model in mice, we report that cutaneous infection with Leishmania major provides heterologous protection against visceral infection with Leishmania infantum. Protection was associated with a robust CD4(+) T cell response at the dermal challenge site and in the viscera. In vivo labeling of circulating cells revealed that increased frequencies of IFN-γ(+)CD4(+) T cells at sites of infection are due to recruitment or retention of cells in the tissue, rather than increased numbers of cells trapped in the vasculature. Shortly after challenge, IFN-γ-producing cells were highly enriched for Ly6C(+)T-bet(+) cells in the viscera. Surprisingly, this heterologous immunity was superior to homologous immunity mediated by prior infection with L. infantum. Our observations demonstrate a common mechanism of protection against different clinical forms of leishmaniasis. The efficacy of leishmanization against VL may warrant the introduction of the practice in VL endemic areas or during outbreaks of disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Leishmania infantum/inmunología , Leishmania major/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/prevención & control , Animales , Linfocitos T CD4-Positivos/patología , Femenino , Interferón gamma/inmunología , Leishmaniasis Visceral/patología , Ratones
7.
Proc Natl Acad Sci U S A ; 111(47): 16808-13, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385616

RESUMEN

Genetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies. Eleven double-drug-resistant progeny clones, each the product of an independent mating event, were generated and submitted to genotype and phenotype analyses. The analysis of multiple allelic markers across the genome suggested that each progeny clone inherited at least one full set of chromosomes from each parent, with loss of heterozygosity at some loci, and uniparental retention of maxicircle kinetoplast DNA. Hybrids with DNA contents of approximately 2n, 3n, and 4n were observed. In vivo studies revealed clear differences in the ability of the hybrids to produce pathology in the skin or to disseminate to and grow in the viscera, suggesting polymorphisms and differential inheritance of the gene(s) controlling these traits. The studies, to our knowledge, represent the first experimental confirmation of cross-species mating in Leishmania, opening the way toward genetic linkage analysis of important traits and providing strong evidence that genetic exchange is responsible for the generation of the mixed-species genotypes observed in natural populations.


Asunto(s)
Insectos Vectores/genética , Leishmania/genética , Psychodidae/parasitología , Animales , Leishmania/clasificación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
8.
PLoS Pathog ; 10(12): e1004538, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473946

RESUMEN

In contrast to the ability of long-lived CD8(+) memory T cells to mediate protection against systemic viral infections, the relationship between CD4(+) T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44(+)CD62L(-)T-bet(+)Ly6C+ effector (T(EFF)) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C(+) T(EFF) cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44(+)CD62L(-)Ly6C(-) effector memory or CD44(+)CD62L(+)Ly6C(-) central memory cells. During chronic infection, Ly6C(+) T(EFF) cells were maintained at high frequencies via reactivation of T(CM) and the T(EFF) themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing T(EFF) cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.


Asunto(s)
Antígenos Ly/inmunología , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Animales , Antígenos Ly/genética , Enfermedad Crónica , Femenino , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Selectina L/genética , Selectina L/inmunología , Leishmania major/genética , Leishmaniasis Cutánea/genética , Ratones
9.
Infect Immun ; 82(7): 2713-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24733090

RESUMEN

The route of pathogen inoculation by needle has been shown to influence the outcome of infection. Employing needle inoculation of the obligately intracellular parasite Leishmania major, which is transmitted in nature following intradermal (i.d.) deposition of parasites by the bite of an infected sand fly, we identified differences in the preexisting and acute cellular responses in mice following i.d. inoculation of the ear, subcutaneous (s.c.) inoculation of the footpad, or inoculation of the peritoneal cavity (intraperitoneal [i.p.] inoculation). Initiation of infection at different sites was associated with different phagocytic populations. Neutrophils were the dominant infected cells following i.d., but not s.c. or i.p., inoculation. Inoculation of the ear dermis resulted in higher frequencies of total and infected neutrophils than inoculation of the footpad, and these higher frequencies were associated with a 10-fold increase in early parasite loads. Following inoculation of the ear in the absence of neutrophils, parasite phagocytosis by other cell types did not increase, and fewer parasites were able to establish infection. The frequency of infected neutrophils within the total infected CD11b(+) population was higher than the frequency of total neutrophils within the total CD11b(+) population, demonstrating that neutrophils are overrepresented as a proportion of infected cells. Employing i.d. inoculation to model sand fly transmission of parasites has significant consequences for infection outcome relative to that of s.c. or i.p. inoculation, including the phenotype of infected cells and the number of parasites that establish infection. Vector-borne infections initiated in the dermis likely involve adaptations to this unique microenvironment. Bypassing or altering this initial step has significant consequences for infection.


Asunto(s)
Leishmania major/fisiología , Animales , Antígenos CD/metabolismo , Mordeduras y Picaduras , Oído , Femenino , Pie , Regulación de la Expresión Génica/inmunología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Macrófagos Peritoneales , Ratones , Ratones Endogámicos C57BL , Cavidad Peritoneal/parasitología , Psychodidae
10.
Eur J Immunol ; 43(2): 427-38, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23109292

RESUMEN

Primary Leishmania major infection typically produces cutaneous lesions that not only heal but also harbor persistent parasites. While the opposing roles of CD4(+) T-cell-derived IFN-γ and IL-10 in promoting parasite killing and persistence have been well established, how these responses develop from naïve precursors has not been directly monitored throughout the course of infection. We used peptide:Major Histocompatibility Complex class II (pMHCII) tetramers to investigate the endogenous, parasite-specific primary CD4(+) T-cell response to L. major in mice resistant to infection. Maximal frequencies of IFN-γ(+) CD4(+) T cells were observed in the spleen and infected ears within a month after infection and were maintained into the chronic phase. In contrast, peak frequencies of IL-10(+) CD4(+) T cells emerged within 2 weeks of infection, persisted into the chronic phase, and accumulated in the infected ears but not the spleen, via a process that depended on local antigen presentation. T helper type-1 (Th1) cells, not Foxp3(+) regulatory T cells, were the chief producers of IL-10 and were not exhausted. Therefore, tracking antigen-specific CD4(+) T cells revealed that IL-10 production by Th1 cells is not due to persistent T-cell antigen receptor stimulation, but rather driven by early antigen encounter at the site of infection.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Animales , Oído , Femenino , Factores de Transcripción Forkhead/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Interferón gamma/inmunología , Interleucina-10/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología
11.
PLoS Pathog ; 8(2): e1002536, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359507

RESUMEN

Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4(+) T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.


Asunto(s)
Apoptosis/inmunología , Células Dendríticas/inmunología , Leishmaniasis Cutánea/inmunología , Neutrófilos/inmunología , Traslado Adoptivo , Animales , Separación Celular , Células Dendríticas/parasitología , Citometría de Flujo , Inmunohistoquímica , Leishmania/inmunología , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/parasitología
12.
J Immunol ; 189(10): 4832-41, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23045616

RESUMEN

Numerous experimental Leishmania vaccines have been developed to prevent the visceral and cutaneous forms of Leishmaniasis, which occur after exposure to the bite of an infected sand fly, yet only one is under evaluation in humans. KSAC and L110f, recombinant Leishmania polyproteins delivered in a stable emulsion (SE) with the TLR4 agonists monophosphoryl lipid A or glucopyranosyl lipid A (GLA) have shown protection in animal models. KSAC+GLA-SE protected against cutaneous disease following sand fly transmission of Leishmania major in susceptible BALB/c mice. Similar polyprotein adjuvant combinations are the vaccine candidates most likely to see clinical evaluation. We assessed immunity generated by KSAC or L110f vaccination with GLA-SE following challenge with L. major by needle or infected sand fly bite in resistant C57BL/6 mice. Polyprotein-vaccinated mice had a 60-fold increase in CD4(+)IFN-γ(+) T cell numbers versus control animals at 2 wk post-needle inoculation of L. major, and this correlated with a 100-fold reduction in parasite load. Immunity did not, however, reach levels observed in mice with a healed primary infection. Following challenge by infected sand fly bite, polyprotein-vaccinated animals had comparable parasite loads, greater numbers of neutrophils at the challenge site, and reduced CD4(+)IFN-γ(+)/IL-17(+) ratios versus nonvaccinated controls. In contrast, healed animals had significantly reduced parasite loads and higher CD4(+)IFN-γ(+)/IL-17(+) ratios. These observations demonstrate that vaccine-induced protection against needle challenge does not necessarily translate to protection following challenge by infected sand fly bite.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Leishmania major/inmunología , Vacunas contra la Leishmaniasis/farmacología , Leishmaniasis Cutánea/prevención & control , Lípido A/análogos & derivados , Proteínas Protozoarias/farmacología , Psychodidae , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Emulsiones , Interferón gamma/inmunología , Interleucina-17/inmunología , Leishmania major/genética , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/transmisión , Lípido A/farmacología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología
13.
Res Sq ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066418

RESUMEN

Tissue-resident macrophages (TRMs) are critical for tissue homeostasis/repair. We previously showed that dermal TRMs produce CCL24 (eotaxin2) which mediates their interaction with IL-4 producing eosinophils, required to maintain their number and M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we unveil another layer of TRM self-maintenance involving their production of TSLP, an alarmin typically characterized as epithelial cell-derived. Both TSLP signaling and IL-5+ innate lymphoid cell 2 (ILC2s) were shown to maintain the number of dermal TRMs and promote infection. Single cell RNA sequencing identified the dermal TRMs as the sole source of TSLP and CCL24. Development of Ccl24-cre mice permitted specific labeling of dermal TRMs, as well as interstitial TRMs from other organs. Genetic ablation of TSLP from dermal TRMs reduced the number of dermal TRMs, and disease was ameliorated. Thus, by orchestrating localized type 2 circuitries with ILC2s and eosinophils, dermal TRMs are self-maintained as a replicative niche for L. major.

14.
Nat Commun ; 14(1): 7852, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030609

RESUMEN

Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.


Asunto(s)
Inmunidad Innata , Leishmaniasis Cutánea , Animales , Ratones , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Linfocitos/metabolismo , Citocinas/metabolismo , Linfopoyetina del Estroma Tímico , Macrófagos/metabolismo , Dermis/metabolismo
15.
Acta Trop ; 245: 106979, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37391025

RESUMEN

Leishmaniasis is a neglected tropical disease caused by protozoan parasites of genus Leishmania, and transmitted by different species of Phlebotomine sand flies. More than 20 species of Leishmania are known to cause disease in humans and other animals. Leishmania donovani species complex is known to have a vast diversity of clinical manifestations in humans, but underlying mechanisms for such diversity are yet unknown. Long believed to be strictly asexual, Leishmania have been shown to undergo a cryptic sexual cycle inside its sandfly vector. Natural populations of hybrid parasites have been associated with the rise of atypical clinical outcomes in the Indian subcontinent (ISC). However, formal demonstration of genetic crossing in the major endemic sandfly species in the ISC remain unexplored. Here, we investigated the ability of two distinct variants of L. donovani associated with strikingly different forms of the disease to undergo genetic exchange inside its natural vector, Phlebotomus argentipes. Clinical isolates of L. donovani either from a Sri Lankan cutaneous leishmaniasis (CL) patient or an Indian visceral leishmaniasis (VL) patient were genetically engineered to express different fluorescent proteins and drug-resistance markers and subsequently used as parental strains in experimental sandfly co-infection. After 8 days of infection, sand flies were dissected and midgut promastigotes were transferred into double drug-selective media. Two double drug-resistant, dual fluorescent hybrid cell lines were recovered, which after cloning and whole genome sequencing, were shown to be full genomic hybrids. This study provides the first evidence of L. donovani hybridization within its natural vector Ph. argentipes.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Phlebotomus , Psychodidae , Animales , Humanos , Phlebotomus/parasitología , Leishmania donovani/genética , Leishmaniasis Visceral/epidemiología , Psychodidae/parasitología , Hibridación Genética
16.
J Exp Med ; 203(10): 2363-75, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17000865

RESUMEN

Infection of mammalian hosts with Leishmania amazonensis depends on the remarkable ability of these parasites to replicate within macrophage phagolysosomes. A critical adaptation for survival in this harsh environment is an efficient mechanism for gaining access to iron. In this study, we identify and characterize LIT1, a novel L. amazonensis membrane protein with extensive similarity to IRT1, a ZIP family ferrous iron transporter from Arabidopsis thaliana. The ability of LIT1 to promote iron transport was demonstrated after expression in yeast and in L. amazonensis LIT1-null amastigotes. Endogenous LIT1 was only detectable in amastigotes replicating intracellularly, and its intracellular expression was accelerated under conditions predicted to result in iron deprivation. Although L. amazonensis lacking LIT1 grew normally in axenic culture and had no defects differentiating into infective forms, replication within macrophages was abolished. Consistent with an essential role for LIT1 in intracellular growth as amastigotes, Deltalit1 parasites were avirulent. After inoculation into highly susceptible mice, no lesions were detected, even after extensive periods of time. Despite the absence of pathology, viable Deltalit1 parasites were recovered from the original sites of inoculation, indicating that L. amazonensis can persist in vivo independently of the ability to grow in macrophages. Our findings highlight the essential role played by intracellular iron acquisition in Leishmania virulence and identify this pathway as a promising target for therapeutic intervention.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Leishmania/metabolismo , Leishmania/patogenicidad , Lisosomas/parasitología , Macrófagos/parasitología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Hierro/metabolismo , Leishmania/fisiología , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Reproducción/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Virulencia , Levaduras
17.
PLoS Pathog ; 6(11): e1001185, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085609

RESUMEN

Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded ß1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.


Asunto(s)
Sistema Digestivo/parasitología , Galactosa/metabolismo , Glicoesfingolípidos/metabolismo , Leishmania major/crecimiento & desarrollo , Leishmaniasis Cutánea/parasitología , Phlebotomus/parasitología , Fosfatasa Ácida/metabolismo , Animales , Leishmaniasis Cutánea/metabolismo
18.
Pathogens ; 11(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631101

RESUMEN

Despite major advances over the last decade in our understanding of Leishmania reproductive strategies, the sexual cycle in Leishmania has defied direct observation and remains poorly investigated due to experimental constraints. Here, we summarize the findings and conclusions drawn from genetic analysis of experimental hybrids generated in sand flies and highlight the recent advances in generating hybrids in vitro. The ability to hybridize between culture forms of different species and strains of Leishmania should invite more intensive investigation of the mechanisms underlying genetic exchange and provide a rich source of recombinant parasites for future genetic analyses.

19.
PLoS Pathog ; 5(6): e1000484, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19543375

RESUMEN

Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.


Asunto(s)
Leishmania major/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis/inmunología , Psychodidae/parasitología , Animales , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Islas de CpG/inmunología , Modelos Animales de Enfermedad , Epidermis/inmunología , Femenino , Citometría de Flujo , Inflamación/inmunología , Insectos Vectores/parasitología , Leishmaniasis/prevención & control , Leishmaniasis/transmisión , Vacunas contra la Leishmaniasis/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Estadísticas no Paramétricas , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
20.
Genes (Basel) ; 12(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530584

RESUMEN

A cryptic sexual reproductive cycle in Leishmania has been inferred through population genetic studies revealing the presence of hybrid genotypes in natural isolates, with attempts made to decipher sexual strategies by studying complex chromosomal inheritance patterns. A more informative approach is to study the products of controlled, laboratory-based experiments where known strains or species are crossed in the sand fly vector to generate hybrid progeny. These hybrids can be subsequently studied through high resolution sequencing technologies and software suites such as PAINT that disclose inheritance patterns including ploidies, parental chromosome contributions and recombinations, all of which can inform the sexual strategy. In this work, we discuss the computational methods in PAINT that can be used to interpret the sexual strategies adopted specifically by aneuploid organisms and summarize how PAINT has been applied to the analysis of experimental hybrids to reveal meiosis-like sexual recombination in Leishmania.


Asunto(s)
Aneuploidia , Genoma , Leishmania/fisiología , Modelos Biológicos , Reproducción , Mapeo Cromosómico , Biología Computacional , Bases de Datos Genéticas , Hibridación Genética , Meiosis , Ploidias , Polimorfismo de Nucleótido Simple , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA