Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(22): 4572-4574, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34798042

RESUMEN

In this issue of Molecular Cell, Kong et al. (2021) report that in Arabidopsis, immune elicitation promotes mono(ADP-ribosyl)ation (MARylation) of immune regulators SZP1 and SZP2 by a noncanonical ADP-ribosyltransferase, SRO2. MARylation results in stabilization of SZF1 by antagonizing its ubiquitin mediated proteasomal degradation. Consequently, these MARylation events ensure appropriate immune responses.


Asunto(s)
ADP-Ribosilación , Arabidopsis , ADP Ribosa Transferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Inmunidad de la Planta/genética , Ubiquitinación
2.
Plant Cell ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923935

RESUMEN

SUMO modification is part of the spectrum of Ubiquitin-like (UBL) systems that give rise to proteoform complexity through post-translational modifications (PTMs). Proteoforms are essential modifiers of cell signaling for plant adaptation to changing environments. Exploration of the evolutionary emergence of Ubiquitin-like (UBL) systems unveils their origin from prokaryotes where it is linked to the mechanisms that enable sulfur uptake into biomolecules. We explore the emergence of the SUMO machinery across the plant lineage from single-cell to land plants. We reveal the evolutionary point at which plants acquired the ability to form SUMO chains through the emergence of SUMO E4 ligases hinting at its role in facilitating multicellularity. Additionally, we explore the possible mechanism for the neofunctionalization of SUMO proteases through the fusion of conserved catalytic domains with divergent sequences. We highlight the pivotal role of SUMO proteases in plant development and adaptation, offering new insights into target specificity mechanisms of SUMO modification during plant evolution. Correlating the emergence of adaptive traits in the plant lineage with established experimental evidence for SUMO in developmental processes we propose that SUMO modification has evolved to link developmental processes to adaptive functions in land plants.

3.
Proc Natl Acad Sci U S A ; 120(4): e2217255120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652487

RESUMEN

Brassinosteroids (BRs) are a class of steroid molecules perceived at the cell surface that act as plant hormones. The BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) offers a model to understand receptor-mediated signaling in plants and the role of post-translational modifications. Here we identify SUMOylation as a new modification targeting BRI1 to regulate its activity. BRI1 is SUMOylated in planta on two lysine residues, and the levels of BRI1 SUMO conjugates are controlled by the Desi3a SUMO protease. Loss of Desi3a leads to hypersensitivity to BRs, indicating that Desi3a acts as a negative regulator of BR signaling. Besides, we demonstrate that BRI1 is deSUMOylated at elevated temperature by Desi3a, leading to increased BRI1 interaction with the negative regulator of BR signaling BIK1 and to enhanced BRI1 endocytosis. Loss of Desi3a or BIK1 results in increased response to temperature elevation, indicating that BRI1 deSUMOylation acts as a safety mechanism necessary to keep temperature responses in check. Altogether, our work establishes BRI1 deSUMOylation as a molecular crosstalk mechanism between temperature and BR signaling, allowing plants to translate environmental inputs into growth response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Temperatura , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Plant Cell ; 34(8): 2892-2906, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35567527

RESUMEN

A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Plantones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinas/genética
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649235

RESUMEN

The versatility of mitogen-activated protein kinases (MAPKs) in translating exogenous and endogenous stimuli into appropriate cellular responses depends on its substrate specificity. In animals, several mechanisms have been proposed about how MAPKs maintain specificity to regulate distinct functional pathways. However, little is known of mechanisms that enable substrate selectivity in plant MAPKs. Small ubiquitin-like modifier (SUMO), a posttranslational modification system, plays an important role in plant development and defense by rapid reprogramming of cellular events. In this study we identified a functional SUMO interaction motif (SIM) in Arabidopsis MPK3 and MPK6 that reveals a mechanism for selective interaction of MPK3/6 with SUMO-conjugated WRKY33, during defense. We show that WRKY33 is rapidly SUMOylated in response to Botrytis cinerea infection and flg22 elicitor treatment. SUMOylation mediates WRKY33 phosphorylation by MPKs and consequent transcription factor activity. Disruption of either WRKY33 SUMO or MPK3/6 SIM sites attenuates their interaction and inactivates WRKY33-mediated defense. However, MPK3/6 SIM mutants show normal interaction with a non-SUMOylated form of another transcription factor, SPEECHLESS, unraveling a role for SUMOylation in differential substrate selectivity by MPKs. We reveal that the SUMO proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2 control WRKY33 SUMOylation and demonstrate a role for these SUMO proteases in defense. Our data reveal a mechanism by which MPK3/6 prioritize molecular pathways by differentially selecting substrates using the SUMO-SIM module during defense responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Botrytis/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Enfermedades de las Plantas , Ubiquitinas , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Ubiquitinas/genética , Ubiquitinas/inmunología
7.
Cell Mol Life Sci ; 78(6): 2641-2664, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33452901

RESUMEN

Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Procesamiento Proteico-Postraduccional , Proteasas Ubiquitina-Específicas/metabolismo
8.
Plant Cell ; 30(9): 2099-2115, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30115737

RESUMEN

Plants respond rapidly to sudden environmental cues, often responding prior to changes in the hormone levels that coordinate these responses. How this is achieved is not fully understood. The integrative role of the phytohormone jasmonic acid (JA) relies upon the plant's ability to control the levels of JASMONATE ZIM (JAZ) domain-containing repressor proteins. Here, we demonstrate that regardless of intrinsic JA levels, Small Ubiquitin-like Modifier (SUMO)-conjugated JAZ proteins inhibit the JA receptor CORONATINE INSENSITIVE1 (COI1) from mediating non-SUMOylated JAZ degradation. The SUMO-deconjugating proteases OVERLY TOLERANT TO SALT1 (OTS1) and OTS2 regulate JAZ protein SUMOylation and stability. The ots1 ots2 double mutants accumulate SUMOylated and non-SUMOylated JAZ repressor proteins but show no change in endogenous JA levels compared with wild-type plants. SUMO1-conjugated JAZ proteins bind to COI1 independently of the JA mimic coronatine. SUMO inhibits JAZ binding to COI1. We identify the SUMO interacting motif in COI1 and demonstrate that this is vital to SUMO-dependent inhibition of COI1. Necrotroph infection of Arabidopsis thaliana promotes SUMO protease degradation, and this increases JAZ SUMOylation and abundance, which in turn inhibits JA signaling. This study reveals a mechanism for rapidly regulating JA responses, allowing plants to adapt to environmental changes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ubiquitinas/metabolismo , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oxilipinas/metabolismo , Transducción de Señal , Ubiquitinas/genética
9.
Physiol Plant ; 171(1): 77-85, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32880960

RESUMEN

Post-translational modifications (PTMs) play a critical role in regulating plant growth and development through the modulation of protein functionality and its interaction with its partners. Analysis of the functional implication of PTMs on plant cellular signalling presents grand challenges in understanding their significance. Proteins decorated or modified with another chemical group or polypeptide play a significant role in regulating physiological processes as compared with non-decorated or non-modified proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO-mediated regulation of plant stress responses and its consequences is required to understand the mechanism underneath. Here, we will discuss the recent advances in the role and significance of SUMOylation in plant growth, development and stress response.


Asunto(s)
Desarrollo de la Planta , Sumoilación , Plantas , Procesamiento Proteico-Postraduccional
10.
PLoS Genet ; 13(1): e1006540, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28056034

RESUMEN

Hypersensitive response programmed cell death (HR-PCD) is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.


Asunto(s)
Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Muerte Celular , Mutación , Proteínas de Plantas/genética , Unión Proteica , Nicotiana/genética , Nicotiana/inmunología , Ubiquitina-Proteína Ligasas/genética
11.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545181

RESUMEN

A major cause of yield loss in wheat worldwide is the fungal pathogen Zymoseptoria tritici, a hemibiotrophic fungus which causes Septoria leaf blotch, the most destructive wheat disease in Europe. Resistance in commercial wheat varieties is poor, however, a link between reduced nitrogen availability and increased Septoria tolerance has been observed. We have shown that Septoria load is not affected by nitrogen, whilst the fungus is in its first, symptomless stage of growth. This suggests that a link between nitrogen and Septoria is only present during the necrotrophic phase of Septoria infection. Quantitative real-time PCR data demonstrated that WRKYs, a superfamily of plant-specific transcription factors, are differentially expressed in response to both reduced nitrogen and Septoria. WRKY39 was downregulated over 30-fold in response to necrotrophic stage Septoria, whilst changes in the expression of WRKY68a during the late biotrophic phase were dependent on the concentration of nitrogen under which wheat is grown. WRKY68a may therefore mediate a link between nitrogen and Septoria. The potential remains to identify key regulators in the link between nitrogen and Septoria, and as such, elucidate molecular markers for wheat breeding, or targets for molecular-based breeding approaches.


Asunto(s)
Ascomicetos/patogenicidad , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/microbiología , Ascomicetos/genética , ADN Espaciador Ribosómico/genética , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
12.
Plant J ; 92(6): 1031-1043, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29024118

RESUMEN

Conjugation of SUMO (Small Ubiquitin-like Modifier) protein to cellular targets is emerging as a very influential protein modification system. Once covalently bound, SUMO conjugation can change the stability or functionality of its cognate target proteins. SUMO protease can rapidly reverse SUMO conjugation making this modification system highly dynamic. A major factor in the variation of SUMO-target function is the balance between the conjugated/de-conjugated forms. The mechanistic role of these regulatory SUMO proteases in mediating stress responses has not been defined in any crops. In this study, we reveal the role of the SUMO protease, OsOTS1 in mediating tolerance to drought in rice. OsOTS1 depleted transgenic plants accumulate more ABA and exhibit more productive agronomic traits during drought while OsOTS1 overexpressing lines are drought sensitive but ABA insensitive. Drought and ABA treatment stimulates the degradation of OsOTS1 protein indicating that SUMO conjugation is an important response to drought stress in rice achieved through down-regulation of OTS1/2 activity. We reveal that OsOTS1 SUMO protease directly targets the ABA and drought responsive transcription factor OsbZIP23 for de-SUMOylation affecting its stability. OsOTS-RNAi lines show increased abundance of OsbZIP23 and increased drought responsive gene expression while OsOTS1 overexpressing lines show reduced levels of OsbZIP23 leading to suppressed drought responsive gene expression. Our data reveal a mechanism in which rice plants govern ABA-dependant drought responsive gene expression by controlling the stability of OsbZIP23 by SUMO conjugation through manipulating specific SUMO protease levels.


Asunto(s)
Ácido Abscísico/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Oryza/enzimología , Oryza/fisiología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteolisis , Interferencia de ARN , Salinidad , Estrés Fisiológico , Sumoilación , Técnicas del Sistema de Dos Híbridos , Ubiquitinas/genética , Ubiquitinas/metabolismo
13.
J Exp Bot ; 69(19): 4625-4632, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29897480

RESUMEN

In recent years, post-translational modification (PTM) of proteins has emerged as a key process that integrates plant growth and response to a changing environment. During the processes of domestication and breeding, plants were selected for various yield and adaptational characteristics. The post-translational modifier small ubiquitin-like modifier (SUMO) protein is known to have a role in the regulation of a number of these characteristics. Using bioinformatics, we mined the genomes of cereal and Brassica crops and their non-crop relatives Arabidopsis thaliana and Brachypodium distachyon for ubiquitin-like protease (ULP) SUMO protease sequences. We discovered that the SUMO system in cereal crops is disproportionately elaborate in comparison with that in B. distachyon. We use these data to propose deSUMOylation as a mechanism for specificity in the SUMO system.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/fisiología , Péptido Hidrolasas/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Biología Computacional , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Péptido Hidrolasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(35): 11108-13, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283376

RESUMEN

The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.


Asunto(s)
Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Transducción de Señal , Sumoilación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fitocromo B/química , Fitocromo B/genética , Homología de Secuencia de Aminoácido
15.
Plant J ; 85(1): 120-133, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662259

RESUMEN

The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ligasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sumoilación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ligasas/genética , Mutación , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas/genética , Semillas/genética , Semillas/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Plant Physiol ; 170(4): 2378-91, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26869703

RESUMEN

SUMO (Small Ubiquitin-like Modifier) conjugation onto target proteins has emerged as a very influential class of protein modification systems. SUMO1/2 double mutant plants are nonviable, underlining the importance of SUMO conjugation to plant survival. Once covalently bound, SUMO can alter a conjugated protein's stability and/or function. SUMO conjugation is a highly dynamic process that can be rapidly reversed by the action of SUMO proteases. The balance between the conjugated/deconjugated forms is a major determinant in the modulation of SUMO-target function. Despite the important mechanistic role of SUMO proteases in model plants, until now the identity or the function of these regulatory enzymes has not been defined in any crop plant. In this report, we reveal the ubiquitin-like protease class of SUMO protease gene family in rice (Oryza sativa) and demonstrate a critical role for OsOTS1 SUMO protease in salt stress. OsOTS-RNAi rice plants accumulate high levels of SUMO-conjugated proteins during salt stress and are highly salt sensitive; however, in non-salt conditions, they are developmentally indistinguishable from wild-type plants. Transgenic rice plants overexpressing OsOTS1 have increased salt tolerance and a concomitant reduction in the levels of SUMOylated proteins. We demonstrate that OsOTS1 confers salt tolerance in rice by increasing root biomass. High salinity triggers OsOTS1 degradation, indicating that increased SUMO conjugation in rice plants during salt stress is in part achieved by down-regulation of OTS1/2 activity. OsOTS1 is nuclear localized indicating a direct requirement of OsOTS1-dependent deSUMOylation activity in rice nuclei for salt tolerance.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Secuencia de Aminoácidos , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas Nucleares/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteolisis/efectos de los fármacos , Interferencia de ARN , Tolerancia a la Sal/efectos de los fármacos , Alineación de Secuencia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Suelo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Sumoilación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
J Exp Bot ; 67(9): 2541-8, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27012284

RESUMEN

Plants have evolved to cope with changing environmental conditions. One way plants achieve this is through post-translational modification of target proteins by ubiquitination and SUMOylation. These post-translational modifiers (PMs) can alter stability, protein-protein interactions, and the overall fate of the protein. Both of these systems have remarkable similarities in terms of the process leading to attachment of the PM to its substrate : having to undertake activation, conjugation, and finally ligation to the target. In the ubiquitin system, there are a vast number of ubiquitin ligase enzymes (E3s) that provide specificity for the attachment of ubiquitin. With the SUMO system, only a small number of SUMO E3 ligases have so far been identified in the fully sequenced plant genomes. In Arabidopsis thaliana, there are only two SUMO E3s, compared to over 1400 ubiquitin E3s, a trend also observed in crop species such as Oryza sativa and Zea mays Recent research indicates that removing SUMO from its substrate by the enzymatically active SUMO proteases is a vital part of this system. A class of SUMO proteases called ubiquitin-like proteases (ULPs) are widespread in all eukaryotes; within plants, both monocot and dicot kingdoms have conserved and divergent ULPs and ULP-like proteases. This paper examines the roles ULPs have in stress responses and highlights the 'fine-tuning' of SUMO attachment/removal in balancing growth versus stress.


Asunto(s)
Plantas/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Proteasas Ubiquitina-Específicas/metabolismo , Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Proteasas Ubiquitina-Específicas/fisiología
18.
J Exp Bot ; 67(1): 353-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26494731

RESUMEN

Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Cisteína Endopeptidasas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Transducción de Señal
19.
New Phytol ; 206(2): 726-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25643735

RESUMEN

Eukaryotic two-component signaling involves the His-Asp-His-Asp multistep phosphorelay (MSP). In Arabidopsis thaliana, cytokinin-mediated MSP signaling intermediates include histidine kinases (HKs), histidine phosphotransfer proteins (Hpts) and response regulators (RRs). The structure-function relationship of interaction between Hpt (e.g. AHP1) and RR (e.g. ARR4) is poorly understood. Using a homology model and yeast two-hybrid analysis, we identified key amino acids of ARR4 at the AHP1-ΔARR4((16-175)) interaction interface. Mutating them in Arabidopsis (arr3,4,5,6,8,9 hextuple mutant background) and performing root length assays provided functional relevance, and coimmunoprecipitation (coIP) assay provided biochemical evidence for the interaction. The homology model mimics crystal structures of Hpt-RR complexes. Mutating selected interface residues of ARR4 either abolished or destabilized the interaction. D45A and Y96A mutations weakened interaction with AHP1, and exhibited weaker rescue of root elongation in the hextuple mutants. CoIP analysis using cytokinin-treated transgenic Arabidopsis seedlings provided biochemical evidence for weakened AHP1-ARR4 interaction. The relevance of the selected residues for the interaction was further validated in two independent pairs of Hpt-RR proteins from Arabidopsis and rice (Oryza sativa). Our data provide evidence of a link between Hpt-RR interaction affinity and regulation of downstream functions of RRs. This establishes a structure-function relationship for the final step of a eukaryotic MSP signal cascade.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocininas/metabolismo , Fosfotransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Genes Reporteros , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfotransferasas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA