Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483268

RESUMEN

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Asunto(s)
Bacterias/aislamiento & purificación , Ecosistema , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Clima Desértico , Suelo/química , América del Sur
3.
Methods Mol Biol ; 2820: 49-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941014

RESUMEN

The development of high throughput methods has enabled the study of hundreds of samples and metaproteomics is not the exception. However, the study of thousands of proteins of different organisms represents different challenges from the protein extraction to the bioinformatic analysis. Here, the sample preparation, protein extraction and protein purification for livestock microbiome research throughout metaproteomics are described. These methods are essential because the quality of the final protein pool depends on them. For that reason, the following workflow is a combination of different chemical and physical methods that intend an initial separation of the microbial organisms from the host cells and other organic materials, as well as the extraction of high concentrate pure samples.


Asunto(s)
Ganado , Microbiota , Proteómica , Animales , Ganado/microbiología , Proteómica/métodos , Proteínas/aislamiento & purificación , Proteínas/análisis
4.
Viruses ; 15(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112930

RESUMEN

Ensilaging is one of the most common feed preservation processes using lactic acid bacteria to stabilize feed and save feed quality. The silage bacterial community is well known but the role of the virome and its relationship with the bacterial community is scarce. In the present study, metagenomics and amplicon sequencing were used to describe the composition of the bacterial and viral community during a 40-day grass silage preservation. During the first two days, we observed a rapid decrease in the pH and a shift in the bacterial and viral composition. The diversity of the dominant virus operational taxonomic units (vOTUs) decreased throughout the preservation. The changes in the bacterial community resembled the predicted putative host of the recovered vOTUs during each sampling time. Only 10% of the total recovered vOTUs clustered with a reference genome. Different antiviral defense mechanisms were found across the recovered metagenome-assembled genomes (MAGs); however, only a history of bacteriophage infection with Lentilactobacillus and Levilactobacillus was observed. In addition, vOTUs harbored potential auxiliary metabolic genes related to carbohydrate metabolism, organic nitrogen, stress tolerance, and transport. Our data suggest that vOTUs are enriched during grass silage preservation, and they could have a role in the establishment of the bacterial community.


Asunto(s)
Poaceae , Ensilaje , Ensilaje/análisis , Ensilaje/microbiología , Bacterias/genética , Metagenoma , Metabolismo de los Hidratos de Carbono
5.
Nat Med ; 29(7): 1738-1749, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464040

RESUMEN

Human papillomavirus can cause preinvasive, high-grade squamous intraepithelial lesions (HSILs) as precursors to cancer in the anogenital area, and the microbiome is suggested to be a contributing factor. Men who have sex with men (MSM) living with human immunodeficiency virus (HIV) have a high risk of anal cancer, but current screening strategies for HSIL detection lack specificity. Here, we investigated the anal microbiome to improve HSIL screening. We enrolled participants living with HIV, divided into a discovery (n = 167) and validation cohort (n = 46), and who were predominantly (93.9%) cisgender MSM undergoing HSIL screening with high-resolution anoscopy and anal biopsies. We identified no microbiome composition signatures associated with HSILs, but elevated levels of microbiome-encoded proteins producing succinyl coenzyme A and cobalamin were significantly associated with HSILs in both cohorts. Measurement of these candidate biomarkers alone in anal cytobrushes outperformed anal cytology as a diagnostic indicator for HSILs, increasing the sensitivity from 91.2% to 96.6%, the specificity from 34.1% to 81.8%, and reclassifying 82% of false-positive results as true negatives. We propose that these two microbiome-derived biomarkers may improve the current strategy of anal cancer screening.


Asunto(s)
Neoplasias del Ano , Infecciones por VIH , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , Infecciones por VIH/complicaciones , Vitamina B 12 , Detección Precoz del Cáncer/métodos , Neoplasias del Ano/diagnóstico , Neoplasias del Ano/patología , Biomarcadores , Papillomaviridae
6.
Toxins (Basel) ; 13(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34437454

RESUMEN

The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 µg DON/kg feed, DONhigh: 2493 µg DON/kg feed) or ZEN (ZENlow: 679 µg ZEN/kg feed, ZENhigh: 1623 µg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Micotoxinas/metabolismo , Micotoxinas/toxicidad , Tricotecenos/metabolismo , Tricotecenos/toxicidad , Zearalenona/metabolismo , Zearalenona/toxicidad , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteómica , Porcinos , Animales para Terapia , Destete
7.
mSystems ; 6(5): e0085621, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34665011

RESUMEN

Dairy cows respond individually to stressful situations, even under similar feeding and housing conditions. The phenotypic responsiveness might trace back to their microbiome and its interactions with the host. This long-term study investigated the effects of calving, lipopolysaccharide (LPS)-induced inflammation, and l-carnitine supplementation on fecal bacteria and metabolites, dairy cow milk production, health, energy metabolism, and blood metabolites. Fifty-four multiparous Holstein dairy cows were examined over a defined period of life (168 days). The obtained data allowed a holistic analysis combining microbiome data such as 16S rRNA amplicon sequencing and fecal targeted metabolome (188 metabolites) with host parameters. The conducted analyses allowed the definition of three enterotype-like microbiome clusters in dairy cows which could be linked to the community diversity and dynamics over time. The microbiome clusters were discovered to be treatment independent, governed by Bifidobacterium (C-Bifi), unclassified (uncl.) Clostridiales (C-Clos), and unclassified Spirochaetaceae (C-Spiro). Animals between the clusters varied significantly in terms of illnesses, body weight, microbiome composition, and milk and blood parameters. C-Bifi animals were healthier and leaner with a less diverse but dynamic microbiome. C-Spiro animals were heavier, but the diversity of the static microbiome was higher. This pioneering study uncovered microbiome clusters in dairy cows, each contributing differently to animal health and productive performance and with a crucial role of Bifidobacterium. IMPORTANCE The health of dairy cows has to be carefully considered for sustainable and efficient animal production. The microbiome of animals plays an important role in the host's nutrient supply and regulation of immune functions. We show that a certain composition of the fecal microbiome, called microbiome clusters, can be linked to an animal's health at challenging life events such as calving and inflammation. Cows with a specific set of bacteria have coped better under these stressors than have others. This novel information has great potential for implementing microbiome clusters as a trait for sustainable breeding strategies.

8.
Microbiome ; 9(1): 234, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836555

RESUMEN

BACKGROUND: The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. RESULTS: Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. CONCLUSION: We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems. Video Abstract.


Asunto(s)
Clima Desértico , Microbiota , Archaea/genética , Bacterias/genética , Microbiología del Suelo
9.
Microorganisms ; 9(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065975

RESUMEN

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

10.
Microbiome ; 7(1): 24, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30773139

RESUMEN

BACKGROUND: Aquaculture is on the rise worldwide, and the use of antibiotics is fostering higher production intensity. However, recent findings suggest that the use of antibiotics comes at the price of increased antibiotic resistance. Yet, the effect of the oral administration of antibiotics on the mobility of microbial resistance genes in the fish gut is not well understood. In the present study, Piaractus mesopotamicus was used as a model to evaluate the effect of the antimicrobial florfenicol on the diversity of the gut microbiome as well as antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) using a metagenomic approach. RESULTS: The total relative abundance of ARGs and MGEs significantly increased during the antibiotic exposure. Additionally, phage integrases, transposases, and transposons flanking ARGs accumulated in the gut microbiome of P. mesopotamicus because of the antibiotic exposure. MGEs co-occurring with ARGs showed a significant positive correlation with the total ARGs found. Furthermore, shifts in the gut microbiome towards well-known putative pathogens such as Salmonella, Plesiomonas, and Citrobacter were observed following florfenicol treatment. Mainly Plesiomonas and Citrobacter harbored genes that code for multidrug and phenicol efflux pumps. Moreover, several genes related to RNA processing and modification, cell motility, SOS response, and extracellular structure were enriched due to the antibiotic application. The observed effects were visible during the complete application phase and disappeared at the post-exposure phase. CONCLUSIONS: Our findings suggest that the oral administration of antibiotics increases the potential for MGE-mediated exchange of ARGs in the gut of fish and could contribute to the enrichment and dispersion of ARGs in aquaculture systems. Importantly, this increase in the potential for ARGs exchange could be an effect of changes in community structure and/or ARG mobilization.


Asunto(s)
Antibacterianos/administración & dosificación , Bacterias/clasificación , Characiformes/microbiología , Farmacorresistencia Bacteriana , Secuencias Repetitivas Esparcidas , Tianfenicol/análogos & derivados , Administración Oral , Animales , Antibacterianos/efectos adversos , Acuicultura , Bacterias/efectos de los fármacos , Bacterias/genética , Proteínas Bacterianas/genética , Biodiversidad , Microbioma Gastrointestinal , Transferencia de Gen Horizontal , Filogenia , Tianfenicol/administración & dosificación , Tianfenicol/efectos adversos
12.
Bioresour Technol ; 247: 624-632, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28988048

RESUMEN

The effect of hydraulic retention time (HRT) on the microbial community during acid mine drainage (AMD) treatment was investigated. Physicochemical and molecular (illumina and qPCR) analyses were performed on reactive mixtures collected from seven bioreactors in three-operation period (8, 17 and 36weeks). Long HRT (4day) favored the relative abundance of SRB, causing the increase of residual sulfides and short HRT (1day) affected the anaerobic conditions of the bioreactors and favored the presence the acidophilic chemolithotrophic microorganisms. Besides qPCR indicated that genes related to cellulose degradation were present in low copy numbers and were affected by the HRT. Finally, environmental factors (pH, organic source, metal sulfides, and sulfate concentrations) had significant impact on relative abundance of the phylogenetic lineages, rather than the types of lineages present in the reactive mixture. The findings of this study indicate that HRT affects the stability of passive bioreactors and their microbial communities.


Asunto(s)
Reactores Biológicos , Ácidos , Minería , Filogenia , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA