Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 446(7139): 1100-4, 2007 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-17410130

RESUMEN

In vertebrates, unfertilized eggs (or mature oocytes) are arrested at metaphase of meiosis II by a cytoplasmic activity called cytostatic factor (CSF). The classical Mos-MAPK pathway has long been implicated in CSF arrest of vertebrate eggs, but exactly how it exerts CSF activity remains unclear. Recently, Erp1 (also called Emi2), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) required for degradation of the mitotic regulator cyclin B (ref. 5), has also been shown to be a component of CSF in both Xenopus and mice. Erp1 is destroyed on fertilization or egg activation, like Mos. However, despite these similarities the Mos-MAPK (mitogen-activated protein kinase) pathway and Erp1 are thought to act rather independently in CSF arrest. Here, we show that p90rsk, the kinase immediately downstream from Mos-MAPK, directly targets Erp1 for CSF arrest in Xenopus oocytes. Erp1 is synthesized immediately after meiosis I, and the Mos-MAPK pathway or p90rsk is essential for CSF arrest by Erp1. p90rsk can directly phosphorylate Erp1 on Ser 335/Thr 336 both in vivo and in vitro, and upregulates both Erp1 stability and activity. Erp1 is also present in early embryos, but has little CSF activity owing, at least in part, to the absence of p90rsk activity. These results clarify the direct link of the classical Mos-MAPK pathway to Erp1 in meiotic arrest of vertebrate oocytes.


Asunto(s)
Proteínas F-Box/metabolismo , Sistema de Señalización de MAP Quinasas , Meiosis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oocitos/citología , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Animales , Proteínas F-Box/química , Proteínas F-Box/genética , Oocitos/enzimología , Oocitos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
2.
Proc Natl Acad Sci U S A ; 104(46): 18001-6, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17986610

RESUMEN

CPEB, a cytoplasmic polyadenylation element-binding protein, plays an important role in translational control of maternal mRNAs in early animal development. During Xenopus oocyte maturation, CPEB undergoes a Cdc2-mediated phosphorylation- and ubiquitin-dependent degradation that is required for proper entry into meiosis II. However, the precise mechanism of CPEB degradation, including the identity of the responsible E3 ubiquitin ligase, is not known. Here, we show that the SCF(beta-TrCP) E3 ubiquitin ligase complex targets CPEB for degradation during Xenopus oocyte maturation. beta-TrCP, the F-box protein of SCF(beta-TrCP), specifically binds to a sequence (190)TSGFSS(195) (termed here the TSG motif) of CPEB, thereby targeting CPEB for degradation. beta-TrCP binding depends on phosphorylation of Thr-190, Ser-191, and Ser-195 in the TSG motif. Among these residues, Ser-191 is phosphorylated by the Polo-like kinase Plx1, which binds CPEB at a specific Thr-125 residue prephosphorylated by Cdc2. Finally, Cdc2-mediated phosphorylation of other multiple Ser residues, previously implicated in CPEB degradation, is required for both Thr-125 phosphorylation and beta-TrCP binding, presumably causing conformational changes of CPEB. We propose that Cdc2 and Plx1 sequentially phosphorylate CPEB and target it for SCF(beta-TrCP)-dependent degradation in Xenopus oocytes. We suggest that many other proteins carrying the TSG-like motif may be targeted by SCF(beta-TrCP).


Asunto(s)
Oocitos/citología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Hidrólisis , Datos de Secuencia Molecular , Fosforilación , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/química , Xenopus , Proteínas de Xenopus/química , Factores de Escisión y Poliadenilación de ARNm/química
3.
Mol Biol Cell ; 15(4): 1680-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14767054

RESUMEN

The checkpoint kinase Chk1 undergoes ATR-mediated phosphorylation and activation in response to unreplicated DNA, but the precise mechanism of Chk1 activation is not known. In this study, we have analyzed the domain structure of Xenopus Chk1 and explored the mechanism of its activation by ATR-mediated phosphorylation. We show that the C-terminal region of Xenopus Chk1 contains an autoinhibitory region (AIR), which largely overlaps with a bipartite, unusually long ( approximately 85-amino acid) nuclear localization signal. When coexpressed in oocytes or embryos, the AIR can interact with and inhibit the kinase domain of Chk1, but not full-length Chk1, suggesting an autoinhibitory intramolecular interaction in the Chk1 molecule. If linked with the preceding ATR phosphorylation domain that has either phospho-mimic mutation or genuine phosphorylation, however, the AIR can no longer interact with or inhibit the kinase domain, suggesting a conformational change of the AIR by ATR-mediated phosphorylation. Even in full-length Chk1, such phospho-mimic mutation can interfere with the autoinhibitory intramolecular interaction, but only if this interaction is somewhat weakened by an additional mutation in the AIR. These results provide significant insights into the mechanism of Chk1 activation at the DNA replication checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus , Secuencias de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN/genética , Daño del ADN , Glutatión Transferasa/metabolismo , Immunoblotting , Modelos Biológicos , Mutación , Señales de Localización Nuclear , Oocitos/metabolismo , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Fracciones Subcelulares , Transcripción Genética , Xenopus
4.
Mol Cancer Res ; 1(8): 589-97, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12805406

RESUMEN

In many vertebrates, cyclin B has several subtypes, but the functional differences among them are largely unclear. Previously, we have shown that Xenopus cyclin B2, not cyclin B1, is involved in bipolar spindle formation through its cytoplasmic retention signal (CRS) region. However, identification of a nuclear export signal (NES) in the CRS region of cyclin B1 raised the possibility that an NES-like sequence (NELS) present in the CRS region of cyclin B2 might be involved in bipolar spindle formation. We show here that cyclin B2 is actually exported from the nucleus via its NELS, but that overexpression of the cyclin B2 CRS region, having a mutated NELS, still inhibits bipolar spindle formation in oocytes. In contrast, overexpression of the cyclin B2 CRS region lacking its C-terminal seven amino acids no longer inhibits bipolar spindle formation in oocytes or embryos. These results suggest strongly that the CRS region, especially its C-terminal seven acidic residues, of cyclin B2 is required for bipolar spindle formation in both the meiotic and mitotic cell divisions.


Asunto(s)
Ciclina B/genética , Ciclina B/metabolismo , Señales de Clasificación de Proteína/fisiología , Receptores Citoplasmáticos y Nucleares , Huso Acromático/fisiología , Xenopus/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Citoplasma/metabolismo , Embrión no Mamífero/fisiología , Expresión Génica , Carioferinas/metabolismo , Mitosis/fisiología , Datos de Secuencia Molecular , Oocitos/fisiología , Xenopus/embriología , Proteína Exportina 1
5.
Sci Rep ; 5: 7929, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25604483

RESUMEN

The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K](2-5) as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Xenopus/genética , Xenopus laevis , Dedos de Zinc
6.
Gene Expr Patterns ; 3(2): 165-8, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12711544

RESUMEN

In full-grown Xenopus oocytes, cell-cycle regulators and an inactive form of maturation/M phase promoting factor (pre-MPF) are stored ready to bring about a specific cell cycle for oocyte maturation. We examined the expression pattern of these cell-cycle regulators as well as pre-MPF formation during oogenesis. Cdc2 and Cyclin B2 were already present in stage I oocytes and pre-MPF formation was also detected in stage I oocytes. Some negative regulators of MPF, Myt1 and Chk1, were synthesized early in oogenesis. In contrast, positive regulators of MPF, MEK, MAPK and Cdc25C, were mainly synthesized late in oogenesis. Northern blotting analysis suggested that the synthesis of these cell-cycle regulators was controlled by translation.


Asunto(s)
Ciclo Celular/genética , Oogénesis/genética , Ovario/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Ciclina B/biosíntesis , Ciclina B/genética , Femenino , Perfilación de la Expresión Génica , Factor Promotor de Maduración/biosíntesis , Factor Promotor de Maduración/genética , Oogénesis/fisiología , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Xenopus
7.
Nat Commun ; 5: 3667, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24770399

RESUMEN

In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Emi2, a direct inhibitor of the APC/C ubiquitin ligase. Two different ubiquitin-conjugating enzymes, UbcH10 and Ube2S, work with the APC/C to target APC/C substrates for degradation. However, their possible roles and regulations in unfertilized/fertilized eggs are not known. Here we use Xenopus egg extracts to show that both UbcH10 and Ube2S are required for rapid cyclin B degradation at fertilization, when APC/C binding of Ube2S, but not of UbcH10, increases several fold, coincidently with (SCF(ß-TrCP)-dependent) Emi2 degradation. Interestingly, before fertilization, Emi2 directly inhibits APC/C-Ube2S binding via the C-terminal tail, but on fertilization, its degradation allows the binding mediated by the Ube2S C-terminal tail. Significantly, Emi2 and Ube2S bind commonly to the APC/C catalytic subunit APC10 via their similar C-terminal tails. Thus, Emi2 competitively inhibits APC/C-Ube2S binding before fertilization, while its degradation on fertilization relieves the inhibition for APC/C activation.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas F-Box/metabolismo , Fertilización , Meiosis/fisiología , Unión Proteica , Enzimas Ubiquitina-Conjugadoras/metabolismo , Xenopus
9.
Int J Dev Biol ; 55(6): 627-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21948711

RESUMEN

In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progression. In Xenopus laevis, three isoforms of cdc25 have been identified, viz. cdc25A, cdc25B and cdc25C. In this study, we isolated a cDNA encoding a novel Xenopus Cdc25 phosphatase (named cdc25D). We investigated the temporal and spatial expression patterns of the four cdc25 isoforms during early Xenopus development, using RT-PCR and whole-mount in situ hybridization. cdc25A and cdc25C were expressed both maternally and zygotically, whereas cdc25B and cdc25D were expressed zygotically. Both cdc25A and cdc25C were expressed mainly in prospective neural regions, whereas cdc25B was expressed preferentially in the central nervous system (CNS), such as the spinal cord and the brain. Interestingly, cdc25D was expressed in the epidermal ectoderm of the late-neurula embryo, and in the liver diverticulum endoderm of the mid-tailbud embryo. In agreement with the spatial expression patterns in whole embryos, inhibition of bone morphoge- netic protein (BMP), a crucial step for neural induction, induced an upregulation of cdc25B, but a downregulation of cdc25D in animal cap assays.These results indicate that different cdc25 isoforms are differently expressed and play different roles during early Xenopus development.


Asunto(s)
Embrión no Mamífero/metabolismo , Isoformas de Proteínas/genética , Xenopus laevis/embriología , Fosfatasas cdc25/genética , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Sistema Nervioso Central/embriología , Quinasas Ciclina-Dependientes/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de Proteína , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Fosfatasas cdc25/metabolismo
10.
Dev Cell ; 21(3): 506-19, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21871841

RESUMEN

In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56ß/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Quinasa de la Caseína I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Meiosis , Óvulo/citología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/química , Quinasa de la Caseína I/química , Proteínas de Ciclo Celular/química , División Celular , Proteínas F-Box/química , Femenino , Óvulo/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 2/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-mos/química , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas de Xenopus/química , Xenopus laevis , Quinasa Tipo Polo 1
11.
Mol Biol Cell ; 21(6): 905-13, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20089832

RESUMEN

Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail-mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.


Asunto(s)
Proteínas F-Box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas F-Box/química , Proteínas F-Box/genética , Humanos , Meiosis/fisiología , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
12.
Mol Biol Cell ; 20(8): 2186-95, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19244340

RESUMEN

The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chk1 hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skp1/Cullin1/F-box protein (SCF)(beta-TrCP) ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCF(beta-TrCP)-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCF(beta-TrCP)-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chk1 phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chk1-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chk1 for cell cycle arrest.


Asunto(s)
Ciclo Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Fosfatasas cdc25/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Diferenciación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Activación Enzimática , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Óvulo/citología , Óvulo/enzimología , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Xenopus/embriología , Proteínas de Xenopus/química , Fosfatasas cdc25/química
13.
Development ; 135(11): 2023-30, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18469223

RESUMEN

In vertebrate embryogenesis, neural induction is the earliest step through which the fate of embryonic ectoderm to neuroectoderm becomes determined. Cells in the neuroectoderm or neural precursors actively proliferate before they exit from the cell cycle and differentiate into neural cells. However, little is known about the relationship between cell division and neural differentiation, although, in Xenopus, cell division after the onset of gastrulation has been suggested to be nonessential for neural differentiation. Here, we show that the Forkhead transcription factor FoxM1 is required for both proliferation and differentiation of neuronal precursors in early Xenopus embryos. FoxM1 is expressed in the neuroectoderm and is required for cell proliferation in this region. Specifically, inhibition of BMP signaling, an important step for neural induction, induces the expression of FoxM1 and its target G2-M cell-cycle regulators, such as Cdc25B and cyclin B3, thereby promoting cell division in the neuroectoderm. Furthermore, G2-M cell-cycle progression or cell division mediated by FoxM1 or its target G2-M regulators is essential for neuronal differentiation but not for specification of the neuroectoderm. These results suggest that FoxM1 functions to link cell division and neuronal differentiation in early Xenopus embryos.


Asunto(s)
Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead/genética , Neuronas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Portadoras/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/genética , División Celular/fisiología , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Immunoblotting , Hibridación in Situ , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología
14.
Proc Natl Acad Sci U S A ; 104(10): 3753-8, 2007 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17360425

RESUMEN

Wee1, the inhibitory kinase of cyclin B/Cdc2, undergoes a phosphorylation-dependent catalytic inactivation at M phase of the mitotic cell cycle, but the precise mechanism for this inactivation is not known. Using Xenopus egg and extract systems, we show here that the kinase activity of Xenopus somatic Wee1 (XeWee1B) is regulated by its N-terminal, small, well conserved region, termed here the Wee-box. The Wee-box is essential for the normal kinase activity of XeWee1B during interphase, acting positively on the C-terminal catalytic domain, which alone cannot efficiently phosphorylate Cdc2. Significantly, a Thr-186-Pro (TP) motif within the Wee-box is phosphorylated by Cdc2 at M phase and specifically binds the cis/trans prolyl isomerase Pin1. This Pin1 binding is required for the inactivation of XeWee1B at M phase, presumably causing isomerization of the phospho-TP motif and thereby impairing the function of the Wee-box. These results provide important insights into the mechanism of Wee1 inactivation at M phase.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Isomerasa de Peptidilprolil/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Regulación de la Expresión Génica , Insectos , Mitosis , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Oocitos/metabolismo , Fosforilación , Unión Proteica , Xenopus
15.
Dev Biol ; 303(1): 157-64, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17141208

RESUMEN

Erp1 (also called Emi2), an inhibitor of the APC/C ubiquitin ligase, is a key component of cytostatic factor (CSF) responsible for Meta-II arrest in vertebrate eggs. Reportedly, however, Erp1 is expressed even during meiosis I in Xenopus oocytes. If so, it is a puzzle why normally maturing oocytes cannot arrest at Meta-I. Here, we show that actually Erp1 synthesis begins only around the end of meiosis I in Xenopus oocytes, and that specific inhibition of Erp1 synthesis by morpholino oligos prevents entry into meiosis II. Furthermore, we demonstrate that premature, ectopic expression of Erp1 at physiological Meta-II levels can arrest maturing oocytes at Meta-I. Thus, our results show the essential role for Erp1 in the meiosis I/meiosis II transition in Xenopus oocytes and can explain why normally maturing oocytes cannot arrest at Meta-I.


Asunto(s)
Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Meiosis/fisiología , Oocitos/fisiología , Proteínas de Xenopus/metabolismo , Xenopus/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Immunoblotting , Inmunohistoquímica , Oligonucleótidos , Proteínas Quinasas/metabolismo
16.
EMBO J ; 24(5): 1057-67, 2005 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15692562

RESUMEN

During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Óvulo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Sitios de Unión , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Femenino , Fertilización , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas , Masculino , Meiosis , Mitosis , Modelos Biológicos , Óvulo/citología , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Treonina/química , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Xenopus/embriología , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/química
17.
Proc Natl Acad Sci U S A ; 102(18): 6279-84, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15845771

RESUMEN

Beta-TrCP, the F-box protein of the SCF(beta-TrCP) ubiquitin ligase (SCF, Skp1/Cul1/F-box protein), recognizes the doubly phosphorylated DSG motif (DpSGPhiXpS) in various SCF(beta-TrCP) target proteins. The Cdc25A phosphatase, a key cell-cycle regulator in vertebrate cells, undergoes a rapid ubiquitin-dependent degradation in response to genotoxic stress. Beta-TrCP binds to the DSG motif of human Cdc25A in a manner dependent on Chk1 and other unknown kinases. However, Xenopus Cdc25A does not have a DSG motif at the corresponding site of human Cdc25A. Here, we report that both Xenopus Cdc25A and human Cdc25A have a previously undescribed nonphosphorylated DDG motif (DDGPhiXD) for recognition by beta-TrCP. When analyzed by using Xenopus eggs, the binding of beta-TrCP to the DDG motif is essential for the Chk1-induced ubiquitination and degradation of Xenopus Cdc25A and also plays a role in the degradation of human Cdc25A. The DDG motif also exists in human Cdc25B phosphatase (another key cell-cycle regulator), binds beta-TrCP strongly, and is essential for the ubiquitination and degradation of the (labile) phosphatase in normal conditions. We provide strong evidence that, in both Cdc25A and Cdc25B, the binding (efficiency) of beta-TrCP to the DDG motif is regulated by nearby residues, while ubiquitination is regulated by other events in addition to the beta-TrCP binding. Finally, our additional data suggest that beta-TrCP may recognize nonphosphorylated DDG-like motifs in many other proteins, including X11L (a putative suppressor of beta-amyloid production) and hnRNP-U (a pseudosubstrate of SCF(beta-TrCP)).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Fosfatasas cdc25/metabolismo , Secuencias de Aminoácidos/genética , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN Complementario/genética , Glutatión Transferasa , Humanos , Immunoblotting , Mutagénesis , Óvulo/metabolismo , Unión Proteica , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinas/metabolismo , Xenopus , Proteínas de Xenopus/genética , Proteínas con Repetición de beta-Transducina/genética
18.
Dev Biol ; 250(1): 156-67, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12297103

RESUMEN

Translational arrest of maternal Mos mRNA upon fertilization of Xenopus eggs is a prerequisite for the initiation of embryonic divisions. Recent studies suggest that an embryo deadenylation element (EDEN) present in the 3' untranslated region (3'UTR) is sufficient for deadenylation (and, hence, probably for translational arrest) of Mos mRNA after fertilization. By directly monitoring translation of numerous Mos mRNA constructs in Xenopus eggs, however, we show here that the EDEN is necessary but not sufficient for translational arrest of Mos mRNA. We demonstrate that two AUUUA motifs, each located solitarily and distantly from the EDEN, are also required for the translational arrest of Mos mRNA after fertilization. Significantly, translational arrest of Eg2 mRNA, another EDEN-containing maternal mRNA, also requires a single AUUUA motif located far from the EDEN. Analysis of the poly(A) tails of various Mos mRNA constructs indicates that the EDEN alone confers only partial deadenylation on Mos mRNA, and that the AUUUA motifs act to enhance EDEN-directed deadenylation in a position-dependent manner. Finally, introduction of an excess of the EDEN, but not the AUUUA motifs, into eggs can restore translation of endogenous Mos mRNA. These results suggest that the EDEN, only together with appropriately positioned AUUUA motifs and a trans-acting factor(s), can efficiently deadenylate and hence translationally arrest Mos (as well as Eg2) mRNA after fertilization.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-mos/genética , ARN Mensajero/fisiología , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Sitios de Unión , Fertilización , Xenopus , Cigoto
19.
EMBO J ; 21(10): 2472-84, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12006499

RESUMEN

In eukaryotic cells, the Wee1 protein kinase phosphorylates and inhibits Cdc2, thereby creating an interphase of the cell cycle. In Xenopus, the conventional Wee1 homolog (termed Xe-Wee1A, or Wee1A for short) is maternally expressed and functions in pregastrula embryos with rapid cell cycles. Here, we have isolated a second, zygotic isoform of Xenopus Wee1, termed Xe-Wee1B (or Wee1B for short), that is expressed in postgastrula embryos and various adult tissues. When ectopically expressed in immature oocytes, Wee1B inhibits Cdc2 activity and oocyte maturation (or entry into M phase) much more strongly than Wee1A, due to its short C-terminal regulatory domain. Moreover, ectopic Wee1B, unlike Wee1A, is very labile during meiosis II and cannot accumulate in mature oocytes due to the presence of PEST-like sequences in its N-terminal regulatory domain. Finally, when expressed in fertilized eggs, ectopic Wee1B but not Wee1A does affect cell division and impair cell viability in early embryos, due primarily to its very strong kinase activity. These results suggest strongly that the differential expression of Wee1A and Wee1B is crucial for the developmental regulation of the cell cycle in Xenopus.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Xenopus , Xenopus/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Variación Genética , Meiosis , Mitosis , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinasas/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus/genética
20.
J Biol Chem ; 278(21): 19032-7, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12754270

RESUMEN

The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B/química , Ciclina B/metabolismo , Xenopus laevis , Fosfatasas cdc25/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Quinasa CDC2/metabolismo , Secuencia Conservada , Ciclina B/farmacología , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Femenino , Histonas/metabolismo , Técnicas de Inmunoadsorción , Mutagénesis , Oocitos/efectos de los fármacos , Oocitos/fisiología , Fosforilación , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA