Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 33(2): e17213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014725

RESUMEN

International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS). We use pooled and individual WGS data from brown trout (Salmo trutta) in eight alpine lakes in protected areas. Observed temporal trends in diversity metrics (nucleotide diversity, Watterson's Ï´ and heterozygosity) lie within proposed acceptable threshold values for six of the lakes, but with consistently low values in lakes above the tree line and declines observed in these northern-most lakes. Local effective population size is low in all lakes, highlighting the importance of continued protection of interconnected systems to allow genetic connectivity for long-term viability of these populations. Inbreeding (FROH ) spans 10%-30% and is mostly represented by ancient (<1 Mb) runs of homozygosity, with observations of little change in mutational load. We also investigate adaptive dynamics over evolutionarily short time frames (a few generations); identifying putative parallel selection across all lakes within a gene pertaining to skin pigmentation as well as candidates of selection unique to specific lakes and lake systems involved in reproduction and immunity. We demonstrate the utility of WGS for systematic monitoring of natural populations, a priority concern if genetic diversity is to be protected.


Asunto(s)
Variación Genética , Genoma , Animales , Variación Genética/genética , Genoma/genética , Trucha/genética , Endogamia , Densidad de Población , Lagos
2.
Mol Ecol ; 31(2): 498-511, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699656

RESUMEN

The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome. We returned to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (coding for lactate dehydrogenase A) in brown trout in the small Lakes Bunnersjöarna, Sweden. First, we verified the existence of the two coexisting demes using a 96-SNP fluidigm array. We then applied whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; nucleotide diversity was higher in deme I than in deme II. Strong genetic divergence is observed with genome-wide FST  ≈ 0.2. Compared with data from populations of similar small lakes, this divergence is of similar magnitude as that between reproductively isolated populations. Individual whole-genome resequencing of two individuals per deme suggests higher inbreeding in deme II versus deme I, indicating different degree of isolation. We located two gene-copies for LDH-A and found divergence between demes in a regulatory section of one of these genes. However, we did not find a perfect fit between the sequence data and previous allozyme results, and this will require further research. Our data demonstrates genome-wide divergence governed mostly by genetic drift but also by diversifying selection in coexisting populations. This type of hidden biodiversity needs consideration in conservation management.


Asunto(s)
Aislamiento Reproductivo , Simpatría , Animales , Variación Genética , Genética de Población , Humanos , Isoenzimas , Trucha/genética
3.
PLoS One ; 16(5): e0251976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043665

RESUMEN

The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S. mentella and to scan for evidence of selection. In total, 42,288 SNPs were detected in 277 fish, and 1,943 neutral and 97 tentatively adaptive loci were selected following stringent filtration. Unprecedented levels of genetic differentiation were found among the previously defined 'shallow pelagic', 'deep pelagic' and 'demersal slope' ecotypes, with overall mean FST = 0.05 and 0.24 in neutral and outlier SNPs, respectively. Bayesian computation estimated a concurrent and historical divergence among these three ecotypes and evidence of local adaptation was found in the S. mentella genome. Overall, these findings imply that the depth-defined habitat divergence of S. mentella has led to reproductive isolation and possibly adaptive radiation among these ecotypes. Additional sub-structuring was detected within the 'shallow' and 'deep' pelagic ecotypes. Population assignment of individual fish showed more than 94% agreement between results based on SNP and previously generated microsatellite data, but the SNP data provided a lower estimate of hybridization among the ecotypes than that by microsatellite data. We identified a SNP panel with only 21 loci to discriminate populations in mixed samples based on a machine-learning algorithm. This first SNP based investigation clarifies the population structure of S. mentella, and provides novel and high-resolution genomic tools for future investigations. The insights and tools provided here can readily be incorporated into the management of S. mentella and serve as a template for other exploited marine species exhibiting similar complex life history traits.


Asunto(s)
Adaptación Fisiológica/genética , Especiación Genética , Genoma , Perciformes/genética , Polimorfismo de Nucleótido Simple , Animales , Regiones Árticas , Océano Atlántico , Teorema de Bayes , Ecotipo , Femenino , Genética de Población , Aprendizaje Automático , Masculino , Repeticiones de Microsatélite , Perciformes/clasificación , Aislamiento Reproductivo
4.
Evol Appl ; 10(1): 77-90, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035237

RESUMEN

Genetic population structure is often used to identify management units in exploited species, but the extent of genetic differentiation may be inflated by geographic variation in the level of hybridization between species. We identify the genetic population structure of Sebastes mentella and investigate possible introgression within the genus by analyzing 13 microsatellites in 2,562 redfish specimens sampled throughout the North Atlantic. The data support an historical divergence between the "shallow" and "deep" groups, beyond the Irminger Sea where they were described previously. A third group, "slope," has an extended distribution on the East Greenland Shelf, in addition to earlier findings on the Icelandic slope. Furthermore, S. mentella from the Northeast Arctic and Northwest Atlantic waters are genetically different populations. In both areas, interspecific introgression may influence allele frequency differences among populations. Evidence of introgression was found for almost all the identified Sebastes gene pools, but to a much lower extent than suggested earlier. Greenland waters appear to be a sympatric zone for many of the genetically independent Sebastes groups. This study illustrates that the identified groups maintain their genetic integrity in this region despite introgression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA