RESUMEN
Bio-spinterfaces present numerous opportunities to study spintronics across the biomolecules attached to (ferro)magnetic electrodes. While it offers various exciting phenomena to investigate, it is simultaneously challenging to make stable bio-spinterfaces as biomolecules are sensitive to many factors that it encounters during thin-film growth to device fabrication. The chirality-induced spin-selectivity effect is an exciting discovery, demonstrating an understanding that a specific electron's spin (either up or down) passes through a chiral molecule. The present work utilizes Ustilago maydis Rvb2 protein, an ATP-dependent DNA helicase (also known as Reptin), to fabricate bio-spintronic devices to investigate spin-selective electron transport through the protein. Ferromagnetic materials are well-known for exhibiting spin-polarization, which many chiral and biomolecules can mimic. We report herein spin-selective electron transmission through Rvb2 that exhibits 30% spin polarization at a low bias (+0.5 V) in a device configuration, Ni/Rvb2 protein/indium tin oxide measured under two different magnetic configurations. Our findings demonstrate that biomolecules can be put in circuit components without any expensive vacuum deposition for the top contact. The present study holds a remarkable potential to advance spin-selective electron transport in other biomolecules, such as proteins and peptides, for biomedical applications.
Asunto(s)
Péptidos , Proteínas , Transporte de Electrón , Péptidos/química , Electrones , ElectrodosRESUMEN
Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
Asunto(s)
Asma , Bronquitis , Formaldehído , Fibrosis Pulmonar , Formaldehído/toxicidad , Formaldehído/efectos adversos , Humanos , Asma/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Bronquitis/inducido químicamente , Animales , Exposición a Riesgos Ambientales/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología , Neumonía/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Inflamación/inducido químicamenteRESUMEN
According to the 2021 Malaria report, 241 million clinical episodes with 627000 deaths penalty was estimated across the worldwide. However, mutation in the propeller domain of Plasmodium falciparum kelch 13 protein resulted in longer parasite clearance time following an artemisinin-based treatment and had a greater survival rate of ring-stage parasites even after a brief exposure to a high dose of artesunate. Clinical manifestations become more complex and worse with the emerging trend of drug resistance against artemisinin derivatives and the poor effectiveness of malaria vaccination drive. Steroidal lactone (withanolide) moiety (C-28) isolated from methanolic leaf extract Withania somnifera show a greater affinity towards Pfkelch 13 protein in comparison to the artemisinin derivatives (artesunate, artemether). The isolated compound was characterized to be withaferin A with a percentage yield of 29.01% w/w in chloroform fraction, 1.75% w/w in methanolic extract, and 0.29% w/w in raw leaf powder. Structure-based analysis shows that withaferin A (docking score -8.253, -9.802) has a higher affinity for two distinct binding pockets I and II of the Plasmodium falciparum kelch 13 protein than artesunate (docking score -4.470, -3.656). Further, Gibbs binding free energy signifies thermodynamic stability of the docked complex of withaferin A (-43.25, -43.76 Kcal/mol) in comparison to artesunate docked complex (-8.49, -5.75 Kcal/mol). The pharmacokinetic profile of withaferin A shows more drug-likeness characteristics without violating Jorgensen's rule of three, and Lipinski's rule of five. Hence above experimental findings suggest withaferin A could be a suitable therapeutic adjunct for preclinical evaluation of antimalarial potentiality in artemisinin-resistant malaria. HIGHLIGHTsMalaria is a life-threatening parasitic disease caused by Plasmodium species.The emerging trend of artemisinin resistance and severe side effects (CNS and cardiotoxicity) are the potential challenges faced by antimalarial therapeutics.Artemisinin-mimic potentiality (ROS-mediated antiparasitic activity) of withaferin A shows a strong affinity towards artemisinin resistance Plasmodium falciparum kelch 13 protein.The pharmacokinetic profiling of the withaferin A signifies its drug-likeness characteristics without violating Jorgensen's rule of three, and Lipinski's rule of five.Based on molecular docking and pharmacokinetic profiling, withaferin A could be a suitable therapeutic adjunct for preclinical investigation of antimalarial potentiality in artemisinin-resistant malaria.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Withania , Antimaláricos/farmacología , Plasmodium falciparum , Artesunato/farmacología , Artesunato/uso terapéutico , Simulación del Acoplamiento Molecular , Malaria Falciparum/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria/tratamiento farmacológicoRESUMEN
Psoriasis is a chronic autoimmune pathological condition characterized by hyperactivation of proinflammatory cytokines (IL-6, TNF-α, IL-17, IL-23, etc.). Severe drug-associated toxicities like hepatotoxicity and nephrotoxicity (Methotrexate), teratogenicity (Tazarotene), hypercholesterolemia (Cyclosporine) and hypercalcemia (tacalcitol), are the forefront challenges that demand an alternative approach for the treatment of psoriasis. In the present study, a natural lead molecule 'Betulin' (BE, lup-20(29)-ene-3b,28-diol) was isolated from Betula utilis and subsequently, structure-based molecular docking was employed to identify the molecular target for psoriasis. The computational analysis reflects better affinity of BE towards pro-inflammatory cytokine as compared to standard drugs. Apart from this BE shows a greater affinity towards the overexpressed Glut-1 receptor in comparison to standard drug Metformin (Met). Based on the in silico screening the isolated lead compound was further processed for the evaluation of anti-psoriatic activity via imiquimod (IMQ 5%) induced psoriasis-like skin inflammation model. In vivo screening models were characterized by different parameters (psoriasis area and severity index (PASI) scores, macroscopically and behavioral evaluation, splenomegaly, cytokine levels and histological changes) and compared among the experimental groups. The experimental finding reflects comparable results of PASI score, i.e., 57.14% and 61.9% recovery of test BE-solution (180 mg/kg) and standard Betamethasone di-propionate ointment (BD-oint.0.5 mg/g), respectively. Focusing on other parameters, BE shows relative results such as an enhanced macroscopically with behavioral conditions, reducing the expression of proinflammatory cytokine as well as restoring histological changes with that of BD. These findings suggest that BE-isolated phytoconstituents from Betula utilis could be a potential agent and a step closer to psoriasis treatment. HIGHLIGHTPsoriasis is a multifaceted, immunologically mediated disease consequences production of high levels of proinflammatory mediators and overexpression of Glut-1 transporters that trigger keratinocyte proliferation and inflammatory cascades.A Himalayan silver birch, Betula utilis (Bhojpatra) contains many steroidal terpenes which are responsible for various pharmacological activities that could be exploited in drug development in psoriasis.The computational analysis of BE reflects a better affinity toward the proinflammatory cytokines with their target receptors and indicates a satisfactory range with a slight deviation from Jorgensen and Lipinski's rule and possesses a significant drug choice for psoriasis.Preclinical findings of BE-solution (BE-sol) give a positive response towards IMQ-induced psoriasis-like skin inflammation model.[Figure: see text]Communicated by Ramaswamy H. Sarma.
RESUMEN
Cancer continues to be one of the deadliest diseases that adversely impacts the large population of the world. A stack of scientific documents reflects a huge number of potent plant-based anticancer drugs such as curcumin (CUR), podophyllotoxin, camptothecin (CPT), vincristine, vinblastine, paclitaxel (PTX), etc. that have been integrated into the modern practice of cancer treatment. The demand for natural products raises exponentially as they are generally considered to be safe, and devoid of critical toxic effects at the therapeutic dose when compared to their synthetic counterparts. Despite rising interest towards the potent phytoconstituents, formulation developer faces various challenges in drug development processes such as poor water solubility, low bioavailability, marginal permeability, and nonspecific drug delivery at the target site, etc. Further, adverse drug reaction and multidrug resistance are other critical issues that need to be addressed. Nanomedicines owing to their unique structural and functional attributes help to fix the above challenges for improved translational outcomes. This review summarises the prospects and challenges of a nanotechnology-based drug delivery approach for the delivery of plant-based anticancer drugs.
Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/química , Nanotecnología , Neoplasias/tratamiento farmacológicoRESUMEN
Clinically, probiotics have a significant role in nutrition, immune function, and maintenance of gut homeostasis. Unfortunately, the widespread use of antibiotics disrupts the symbiotic balance of gut microbiota, leading to the development of several gastrointestinal disorders. A recent study suggesting a combination of appropriate probiotics and prebiotics through its ability to fix dysbiosis issues has emerged as a potential alternative to treat various pathological conditions of the Gastrointestinal Tract (GIT). Evidenced-based clinical research suggests that probiotic's effectiveness depends on several factors including strain, dose, host immune system, underlying pathology, and duration of therapy. Moreover, the microflora enriched medium reinforces the host defense against chemical and microbial challenges. However, the limited information available to understand the molecular basis by which probiotic maintains the gut homeostasis. The objective of this review to emphasize recent clinical outcomes and possible mechanisms involved in probiotic action to combat the GIT disorders.
Asunto(s)
Enfermedades Gastrointestinales , Probióticos , Disbiosis/tratamiento farmacológico , Enfermedades Gastrointestinales/tratamiento farmacológico , Tracto Gastrointestinal , Humanos , PrebióticosRESUMEN
The angiotensin-converting enzyme 2(ACE-2) receptors with approx. 0.8% congestion in conjunctival surface, leads to increase susceptibility of Covid-19 transmission through ocular surface. It has been observed that prophylactic measures such as goggle or face shield are unable to offer complete protection against ocular transmission of SRS-CoV-2. Hence, it is hypothesized that topical ocular prophylaxis using biocompatible polymers with reported in-vitro and in-vivo evidence of ACE inhibition and antiviral activity appears to be a promising strategy for preventing ocular transmission of Covid-19 to healthcare workers. They are capable of binding to ACE-2 receptors which may provide highly potential trails to block virus entry to host cells. Further biopolymers imparting antiviral activities greatly improve their protective performance. They not only provide prolong protection but also are safe for long-term use. This article discusses the description of structural and functional attributes of ACE-2 to identify appropriate polymer with better binding affinity. Furthermore, potential polymers with appropriate concentration are suggested for evaluation through a hypothesis to consider them for Covid-19 implication.