Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194968

RESUMEN

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología
2.
Nature ; 602(7897): 481-486, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942632

RESUMEN

Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.


Asunto(s)
Animales Salvajes/virología , COVID-19/veterinaria , Ciervos/virología , Filogenia , SARS-CoV-2/aislamiento & purificación , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , COVID-19/epidemiología , COVID-19/transmisión , Evolución Molecular , Humanos , Masculino , Ohio/epidemiología , Salud Única/tendencias , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis Virales/epidemiología
3.
Proc Natl Acad Sci U S A ; 119(42): e2202871119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215506

RESUMEN

COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.


Asunto(s)
COVID-19 , Quirópteros , Salud Única , Animales , Animales Salvajes , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/prevención & control
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34937699

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


Asunto(s)
COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/inmunología , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , COVID-19/terapia , Fusión Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunización Pasiva , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Sueroterapia para COVID-19
5.
J Virol ; 96(3): e0197321, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817198

RESUMEN

Waning vaccine-induced immunity coupled with the emergence of SARS-CoV-2 variants has led to increases in breakthrough infections, prompting consideration for vaccine booster doses. Boosters have been reported to be safe and increase SARS-CoV-2-specific neutralizing antibody levels, but how these doses impact the trajectory of the global pandemic and herd immunity is unknown. Information on immunology, epidemiology, and equitable vaccine distribution should be considered when deciding the timing and eligibility for COVID-19 vaccine boosters.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/epidemiología , COVID-19/prevención & control , Necesidades y Demandas de Servicios de Salud/estadística & datos numéricos , Inmunización Secundaria , SARS-CoV-2/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inmunidad Colectiva , Evaluación de Resultado en la Atención de Salud , Vacunación
6.
PLoS Pathog ; 17(1): e1009237, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513201

RESUMEN

Rotaviruses (RVs) are a leading cause of acute viral gastroenteritis in young children and livestock worldwide. Growing evidence suggests that host cellular glycans, such as histo-blood group antigens (HBGAs) and sialic acids (SA), are recognized by the RV surface protein VP4. However, a mechanistic understanding of these interactions and their effects on RV infection and pathogenesis is lacking. Here, we established a porcine crypt-derived 3D intestinal enteroids (PIEs) culture system which contains all intestinal epithelial cells identified in vivo and represents a unique physiologically functional model to study RV-glycan interactions in vitro. PIEs expressing different HBGAs (A+, H+, and A+/H+) were established and isolation, propagation, differentiation and RV infection conditions were optimized. Differentiated PIEs were infected with human RV (HRV) G1P[8] Wa, porcine RV (PRV) G9P[13], PRV Gottfried G4P[6] or PRV OSU G5P[7] virulent and attenuated strains and virus replication was measured by qRT-PCR. Our results indicated that virulent HRV G1P[8] Wa replicated to the highest titers in A+ PIEs, while a distinct trend was observed for PRV G9P[13] or G5P[7] with highest titers in H+ PIEs. Attenuated Wa and Gottfried strains replicated poorly in PIEs while the replication of attenuated G9P[13] and OSU strains in PIEs was relatively efficient. However, the replication of all 4 attenuate strains was less affected by the PIE HBGA phenotypes. HBGA synthesis inhibitor 2-F-Peracetyl-Fucose (2F) treatment demonstrated that HBGAs are essential for G1P[8] Wa replication; however, they may only serve as a cofactor for PRVs G9P[13] and OSU G5P[7]. Interestingly, contrasting outcomes were observed following sialidase treatment which significantly enhanced G9P[13] replication, but inhibited the growth of G5P[7]. These observations suggest that some additional receptors recognized by G9P[13] become unmasked after removal of terminal SA. Overall, our results confirm that differential HBGAs-RV and SA-RV interactions determine replication efficacy of virulent group A RVs in PIEs. Consequently, targeting individual glycans for development of therapeutics may not yield uniform results for various RV strains.


Asunto(s)
Antígenos de Grupos Sanguíneos/metabolismo , Gastroenteritis/virología , Infecciones por Rotavirus/virología , Rotavirus/patogenicidad , Ácidos Siálicos/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Células Epiteliales/virología , Humanos , Intestino Delgado/virología , Rotavirus/genética , Rotavirus/fisiología , Porcinos , Virulencia , Replicación Viral
7.
Virol J ; 20(1): 238, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848925

RESUMEN

BACKGROUND: Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS: In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS: The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS: Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Enfermedades de los Porcinos , Animales , Porcinos , Rotavirus/genética , Transcriptoma , Infecciones por Rotavirus/veterinaria , Filogenia , Genotipo
8.
Proc Natl Acad Sci U S A ; 117(50): 32078-32085, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257564

RESUMEN

Human sapoviruses (HuSaVs) cause acute gastroenteritis similar to human noroviruses. Although HuSaVs were discovered four decades ago, no HuSaV has been grown in vitro, which has significantly impeded the understanding of viral biology and the development of antiviral strategies. In this study, we identified two susceptible human cell lines, that originated from testis and duodenum, that support HuSaV replication and found that replication requires bile acids. HuSaVs replicated more efficiently in the duodenum cell line, and viral RNA levels increased up to ∼6 log10-fold. We also detected double-stranded RNA, viral nonstructural and structural proteins in the cell cultures, and intact HuSaV particles. We confirmed the infectivity of progeny viruses released into the cell culture supernatants by passaging. These results indicate the successful growth of HuSaVs in vitro. Additionally, we determined the minimum infectious dose and tested the sensitivities of HuSaV GI.1 and GII.3 to heat and ultraviolet treatments. This system is inexpensive, scalable, and reproducible in different laboratories, and can be used to investigate mechanisms of HuSaV replication and to evaluate antivirals and/or disinfection methods for HuSaVs.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Medios de Cultivo/metabolismo , Sapovirus/fisiología , Cultivo de Virus/métodos , Replicación Viral , Infecciones por Caliciviridae/terapia , Infecciones por Caliciviridae/virología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Células Epiteliales , Heces/virología , Gastroenteritis/terapia , Gastroenteritis/virología , Humanos , Sapovirus/aislamiento & purificación
9.
Clin Infect Dis ; 74(3): 446-454, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34013321

RESUMEN

BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife. METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method. RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance. CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Neumonía , Animales , Gatos , Infecciones por Coronavirus/veterinaria , Coronavirus Canino/genética , Perros , Humanos , Malasia , Filogenia
10.
Biol Reprod ; 106(4): 629-638, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35094055

RESUMEN

Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.


Asunto(s)
Agricultura , Animales Domésticos , Animales , Ganado , National Institutes of Health (U.S.) , Estados Unidos , United States Department of Agriculture
11.
Arch Virol ; 168(1): 5, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539656

RESUMEN

We isolated 20 SARS-CoV-2 strains from positive clinical samples collected in Columbus, Ohio, and investigated the replication of one pair of isolates: a clade 20G strain and a variant of this strain carrying a Q677H mutation in the spike protein and six other amino acid mutations. The OSU.20G variant replicated to a higher peak infectious titer than the 20G base strain in Vero-E6 cells, but the titers were similar when both strains were grown in Calu-3 cells. These results suggest that the OSU.20G variant has increased replication fitness compared to the 20G base strain. This may have contributed to its emergence in December 2020-January 2021.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
12.
J Clin Microbiol ; 59(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33139421

RESUMEN

Surrogate neutralization assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be done without biosafety level 3 containment and in multiple species are desirable. We evaluate a recently developed surrogate virus neutralization test (sVNT) in comparison to 90% plaque reduction neutralization tests (PRNT90) in human, canine, cat, and hamster sera. With PRNT90 as the reference, sVNT had sensitivity of 98.9% and specificity of 98.8%. Using a panel of immune sera corresponding to other coronaviruses, we confirm the lack of cross-reactivity to other coronaviruses in SARS-CoV-2 sVNT and PRNT90, except for cross-reactivity to SARS-CoV-1 in sVNT.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Pruebas de Neutralización/métodos , SARS-CoV-2/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/patología , Gatos , Cricetinae , Reacciones Cruzadas , Perros , Femenino , Humanos , Sueros Inmunes/inmunología , Masculino , Pruebas de Neutralización/normas , SARS-CoV-2/inmunología , Sensibilidad y Especificidad
13.
Vet Pathol ; 58(3): 438-452, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33357102

RESUMEN

Coronaviruses (CoVs) comprise a large group of positive stranded RNA viruses that infect a diverse host range including birds and mammals. Infection with CoVs typically presents as mild to severe respiratory or enteric disease, but CoVs have the potential to cause significant morbidity or mortality in highly susceptible age groups. CoVs have exhibited a penchant for jumping species barriers throughout history with devastating effects. The emergence of highly pathogenic or infectious CoVs in humans over the past 20 years, including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and most recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the significant threat that CoV spillovers pose to humans. Similar to the emergence of SARS-CoV-2, CoVs have been devastating to commercial animal production over the past century, including infectious bronchitis virus in poultry and bovine CoV, as well as the emergence and reemergence of multiple CoVs in swine including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus. These naturally occurring animal CoV infections provide important examples for understanding CoV disease as many animal CoVs have complex pathogenesis similar to SARS-CoV-2 and can shed light on the ongoing SARS-CoV-2 outbreak. We provide an overview and update regarding selected existing animal CoVs and their primary host species, diseases caused by CoVs, how CoVs jump species, whether these CoVs pose an outbreak risk or risk to humans, and how we can mitigate these risks.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus/fisiología , Animales , Aves , Coronavirus/clasificación , Coronavirus/patogenicidad , Infecciones por Coronavirus/transmisión , Modelos Animales de Enfermedad , Humanos , Mamíferos , Filogenia
14.
Proc Natl Acad Sci U S A ; 115(22): E5135-E5143, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760102

RESUMEN

Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.


Asunto(s)
Enfermedades Transmisibles Emergentes , Infecciones por Coronavirus , Coronavirus/fisiología , Coronavirus/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Animales , Anticuerpos Antivirales/inmunología , Antígenos CD13/metabolismo , Gatos , Línea Celular , Pollos , Chlorocebus aethiops , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Perros , Especificidad del Huésped , Humanos , Células de Riñón Canino Madin Darby , Ratones , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos , Células Vero , Zoonosis/transmisión , Zoonosis/virología
15.
Emerg Infect Dis ; 26(2): 255-265, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31961296

RESUMEN

Coronaviruses cause respiratory and gastrointestinal diseases in diverse host species. Deltacoronaviruses (DCoVs) have been identified in various songbird species and in leopard cats in China. In 2009, porcine deltacoronavirus (PDCoV) was detected in fecal samples from pigs in Asia, but its etiologic role was not identified until 2014, when it caused major diarrhea outbreaks in swine in the United States. Studies have shown that PDCoV uses a conserved region of the aminopeptidase N protein to infect cell lines derived from multiple species, including humans, pigs, and chickens. Because PDCoV is a potential zoonotic pathogen, investigations of its prevalence in humans and its contribution to human disease continue. We report experimental PDCoV infection and subsequent transmission among poultry. In PDCoV-inoculated chicks and turkey poults, we observed diarrhea, persistent viral RNA titers from cloacal and tracheal samples, PDCoV-specific serum IgY antibody responses, and antigen-positive cells from intestines.


Asunto(s)
Infecciones por Coronavirus/virología , Deltacoronavirus/aislamiento & purificación , Enfermedades de los Porcinos/epidemiología , Animales , Pollos , Infecciones por Coronavirus/transmisión , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Pavos , Estados Unidos/epidemiología
19.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522830

RESUMEN

Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).


Asunto(s)
Betacoronavirus/crecimiento & desarrollo , Enfermedades de los Bovinos/fisiopatología , Infecciones por Coronavirus/veterinaria , Coronavirus Bovino/crecimiento & desarrollo , Neumonía Viral/fisiopatología , Infecciones del Sistema Respiratorio/veterinaria , Enfermedades de los Porcinos/fisiopatología , Animales , Betacoronavirus/patogenicidad , COVID-19 , Bovinos , Enfermedades de los Bovinos/patología , Enfermedades de los Bovinos/virología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Coronavirus Bovino/patogenicidad , Especificidad del Huésped , Humanos , Pandemias , Neumonía Viral/patología , Coronavirus Respiratorio Porcino/crecimiento & desarrollo , Coronavirus Respiratorio Porcino/patogenicidad , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/fisiopatología , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Tropismo Viral
20.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30404797

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCE Many coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


Asunto(s)
Virus de la Diarrea Epidémica Porcina/patogenicidad , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Enfermedades de los Porcinos/virología , Secuencias de Aminoácidos , Animales , Chlorocebus aethiops , Endocitosis , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Células Vero , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA