Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503389

RESUMEN

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Meiosis , Pleurotus , Esporas Fúngicas , Pleurotus/genética , Pleurotus/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Meiosis/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Esenciales/genética , Transcriptoma/genética
2.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124989

RESUMEN

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Asunto(s)
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutación/genética , Pared Celular/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732124

RESUMEN

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Asunto(s)
Neuronas , Oxitocina , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Kampo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Oxitocina/farmacología , Oxitocina/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
4.
Environ Microbiol ; 25(10): 1909-1924, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218079

RESUMEN

Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Lignina/metabolismo , Sistemas CRISPR-Cas , Peroxidasas/genética , Peroxidasas/metabolismo , Pared Celular/metabolismo
5.
Environ Microbiol ; 25(8): 1393-1408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36959722

RESUMEN

White-rot fungi efficiently degrade wood lignin; however, the mechanisms involved remain largely unknown. Recently, a forward genetics approach to identify several genes in Pleurotus ostreatus (Agaricales) in which mutations cause defects in wood lignin degradation was used. For example, pex1 encodes a peroxisome biogenesis factor and gat1 encodes a putative Agaricomycetes-specific DNA-binding transcription factor. In this study, we examined the effects of single-gene mutations in pex1 or gat1 on wood lignin degradation in another white-rot fungus, Gelatoporia (Ceriporiopsis) subvermispora (Polyporales), to investigate conserved and derived degradation mechanisms in white-rot fungi. G. subvermispora pex1 and gat1 single-gene mutant strains were generated from a monokaryotic wild-type strain, FP-90031-Sp/1, using plasmid-based CRISPR/Cas9. As in P. ostreatus, Gsgat1 mutants were nearly unable to degrade lignin sourced from beech wood sawdust medium (BWS), while Gspex1 mutants exhibited a delay in lignin degradation. We also found that the transcripts of lignin-modifying enzyme-encoding genes, mnp4, mnp5, mnp6, mnp7, and mnp11, which predominantly accumulate in FP-90031-Sp/1 cultured with BWS, were greatly downregulated in Gsgat1 mutants. Taken together, the results suggest that Gat1 may be a conserved regulator of the ligninolytic system of white-rot fungi and that the contribution of peroxisomes to the ligninolytic system may differ among species.


Asunto(s)
Pleurotus , Polyporales , Lignina/metabolismo , Sistemas CRISPR-Cas , Polyporales/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
6.
Appl Microbiol Biotechnol ; 106(17): 5575-5585, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902408

RESUMEN

Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Plásmidos , Polyporales , ARN Pequeño no Traducido/genética
7.
Environ Microbiol ; 23(11): 7009-7027, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34622510

RESUMEN

The transcriptional expression pattern of lignocellulolytic enzyme-encoding genes in white-rot fungi differs depending on the culture conditions. Recently, it was shown that 13 putative cellulolytic enzyme-encoding genes were significantly upregulated in most Pleurotus ostreatus ligninolysis-deficient mutant strains on beech wood sawdust medium. However, the mechanisms by which this transcriptional shift is triggered remain unknown. In this study, we identified one mechanism. Our previous study implied that histone H3 N-dimethylation at lysine 4 level possibly affects the shift; therefore, we analysed the expression pattern in the disruptants of P. ostreatus ccl1, which encodes a putative component of the COMPASS complex mediating the methylation. The results showed upregulation of 5 of the 13 cellulolytic enzyme-encoding genes. We also found that rho1b, encoding a putative GTPase regulating signal transduction pathways, was upregulated in the ccl1 disruptants and ligninolysis-deficient strains. Upregulation of at least three of the five cellulolytic enzyme-encoding genes was observed in rho1b-overexpressing strains but not in ccl1/rho1b double-gene disruptants, during the 20-day culture period. These results suggest that Rho1b may be involved in the upregulation of cellulolytic enzyme-encoding genes observed in the ccl1 disruptants. Furthermore, we suggest that Mpk1b, a putative Agaricomycetes-specific mitogen-activated protein kinase, functions downstream of Rho1b.


Asunto(s)
Fagus , Pleurotus , Lignina/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Regulación hacia Arriba , Madera/microbiología
8.
Fungal Genet Biol ; 147: 103507, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383191

RESUMEN

Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Lignina/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Proteínas Fúngicas/metabolismo , Expresión Génica , Madera/microbiología
9.
Fungal Genet Biol ; 154: 103599, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153439

RESUMEN

Understanding the molecular mechanisms controlling dikaryon formation in Agaricomycetes, which is basically controlled by A and B mating-type loci, contributes to improving mushroom cultivation and breeding. In Coprinopsis cinerea, various mutations in the SRY-type high mobility group protein-encoding gene, pcc1, were shown to activate the A-regulated pathway to induce pseudoclamp (clamp cells without clamp connection) and fruiting body formation in monokaryons. The formation of clamp cells was blocked in AmutBmut strain 326 with clp1-1 mutation in C. cinerea. However, considering the diverse mechanisms of sexual development among Agaricomycetes, it remains unclear whether similar phenotypes are also observed in clp1 or pcc1 mutants in cultivated mushrooms. Therefore, phenotypic analyses of Pleurotus ostreatus pcc1 or clp1 (Popcc1 or Poclp1) mutants generated using CRISPR/Cas9 were performed in this study. Plasmids with Cas9 expression cassette and different single guide RNAs targeting Popcc1 or Poclp1 were individually introduced into a monokaryotic P. ostreatus strain PC9 to obtain the mutants. Unlike in C. cinerea, the pseudoclamp cell was not observed in monokaryotic Popcc1 mutants, but it was observed after crossing two compatible strains with Popcc1 mutations. In Poclp1 mutants, dikaryosis was impaired as clamp cells were not observed after crossing, suggesting that Poclp1 functions may be essential for clamp cell formation, like in C. cinerea. These results provided a clue with respect to conserved and diverse mechanisms underlying sexual development in Agaricomycetes (at least between C. cinerea and P. ostreatus).


Asunto(s)
Proteínas Fúngicas/genética , Pleurotus/genética , Sistemas CRISPR-Cas , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos
10.
Appl Microbiol Biotechnol ; 105(3): 1175-1190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415371

RESUMEN

Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlation with the substrate composition. Transcriptional alterations in the mutants (Δhir1 or Δgat1 versus 20b strain) on RS were similar to those on BWS, and the extracellular lignocellulose-degrading enzyme activities and lignin-degrading ability of the mutants on RS were consistent with the transcriptional alterations of the corresponding enzyme-encoding genes. However, transcripts of specific genes encoding enzymes belonging to the same CAZyme family exhibited distinct alteration patterns in the mutant strains grown on RS compared to those grown on BWS. These findings provide new insights into the molecular mechanisms underlying the transcriptional regulation of lignocellulolytic genes in P. ostreatus.Key Points• P. ostreatus expressed variable enzymatic repertoire-related genes in response to distinct substrates.• A demand to upregulate the cellulolytic genes seems to be present in ligninolysis-deficient mutants.• The regulation of some specific genes probably driven by the demand is dependent on the substrate.


Asunto(s)
Fagus , Oryza , Pleurotus , Fagus/metabolismo , Regulación de la Expresión Génica , Lignina/metabolismo , Oryza/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Madera/metabolismo
11.
Plant J ; 98(6): 975-987, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30773774

RESUMEN

Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.


Asunto(s)
Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Oryza/genética , Propionatos/metabolismo , Factores de Transcripción/metabolismo , Biomasa , Sistemas CRISPR-Cas , Pared Celular/química , Pared Celular/metabolismo , Ácidos Cumáricos , Edición Génica , Redes Reguladoras de Genes , Lignina/química , Mutación con Pérdida de Función , Oryza/química , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Regulación hacia Arriba
12.
Plant J ; 97(3): 543-554, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375064

RESUMEN

The aromatic composition of lignin is an important trait that greatly affects the usability of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5-hydroxylase (OsCAld5H1), which was effective in modulating syringyl (S)/guaiacyl (G) lignin composition ratio in rice, a model grass species. Previously characterized OsCAld5H1-knockdown rice lines, which were produced via an RNA-interference approach, showed augmented G lignin units yet contained considerable amounts of residual S lignin units. In this study, to further investigate the effect of suppression of OsCAld5H1 on rice lignin structure, we generated loss-of-function mutants of OsCAld5H1 using the CRISPR/Cas9-mediated genome editing system. Homozygous OsCAld5H1-knockout lines harboring anticipated frame-shift mutations in OsCAld5H1 were successfully obtained. A series of wet-chemical and two-dimensional NMR analyses on cell walls demonstrated that although lignins in the mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intriguingly, lignin γ-p-coumaroylation analysis by the derivatization followed by reductive cleavage method revealed that enrichment of G units in lignins of the mutants was limited to the non-γ-p-coumaroylated units, whereas grass-specific γ-p-coumaroylated lignin units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAld5H1 were overexpressed in the mutants. These data suggested that CAld5H is mainly involved in the production of non-γ-p-coumaroylated S lignin units, common in both eudicots and grasses, but not in the production of grass-specific γ-p-coumaroylated S units in rice.


Asunto(s)
Acroleína/análogos & derivados , Lignina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oryza/genética , Acroleína/metabolismo , Biomasa , Sistemas CRISPR-Cas , Pared Celular/metabolismo , Ácidos Cumáricos , Mutación con Pérdida de Función , Oxigenasas de Función Mixta/genética , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propionatos/metabolismo
13.
Curr Genet ; 66(1): 217-228, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31280336

RESUMEN

Cis-acting elements play a vital role in regulation of transcription initiation. Several cis-acting elements have been identified in filamentous fungi; however, the fundamental requirements for basic promoter function in basidiomycetes are obscure. In this study, core elements in ß1-tubulin promoters of basidiomycetes were functionally characterized. Using transient transformation in Ceriporiopsis subvermispora as a promoter assay, we found that a 14-bp region (ß1-tubulin core promoter element, BCE), as well as CT-rich stretch, in the ß1-tubulin promoter of the species played a critical role in the expression of a recombinant hph as a reporter gene. In addition, in silico analysis revealed other members of basidiomycetes also harboured the BCE motif as well as CT-rich stretch in the ß1-tubulin promoter region, suggesting their functional conservation among the species of basidiomycetes. To confirm the function of BCE, we investigated the effects of BCE motif deletion in the Pleurotus ostreatus ß1-tubulin promoter on expression levels of a recombinant luminous shrimp luciferase reporter gene, which was targeted into the Pofcy1 locus. Intriguingly, luciferase activity was abolished when the BCE motif was deleted in the ß1-tubulin promoter, strongly demonstrating its essential function in transcription from this promoter on the chromosome. This study clearly demonstrates the crucial role of the BCE as well as the CT-rich stretch regions in the ß1-tubulin promoter among basidiomycetes and provides new insights into the fundamental mechanism of transcription initiation in this group.


Asunto(s)
Basidiomycota/genética , Regulación Fúngica de la Expresión Génica , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Tubulina (Proteína)/genética , Secuencia de Bases , Biología Computacional/métodos , Secuencia Conservada , Expresión Génica , Genes Reporteros , Plásmidos/genética , Posición Específica de Matrices de Puntuación
14.
Curr Genet ; 66(2): 445-446, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31346746

RESUMEN

The original publication of this paper unfortunately contained three errors in Figs. 2B and 3. In Fig. 2B, the TSS site must be counted as "+ 1" instead of "- 1". And we indicated wrong sequences in Fig. 3: the construct "Control" has a missing one "A" in the BCE sequence, and the reverse direction of BCE sequence in the construct "BCEr" must be "GCGGAGTTTCAATT", not "CGCCTCAAGTTAA". For the reasons stated herein, the authors wish to notify the readers that Figs. 2B and 3 must be interpreted as the followings.

15.
Plant J ; 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29890017

RESUMEN

p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.

16.
Environ Microbiol ; 19(1): 261-272, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871142

RESUMEN

White-rot fungi play an important role in the global carbon cycle because they are the species that almost exclusively biodegrade wood lignin in nature. Lignin peroxidases (LiPs), manganese peroxidases (MnPs) and versatile peroxidases (VPs) are considered key players in the ligninolytic system. Apart from LiPs, MnPs and VPs, however, only few other factors involved in the ligninolytic system have been investigated using molecular genetics, implying the existence of unidentified elements. By combining classical genetic techniques with next-generation sequencing technology, they successfully showed an efficient forward genetics approach to identify mutations causing defects in the ligninolytic system of the white-rot fungus Pleurotus ostreatus. In this study, they identified two genes - chd1 and wtr1 - mutations in which cause an almost complete loss of Mn2+ -dependent peroxidase activity. The chd1 gene encodes a putative chromatin modifier, and wtr1 encodes an agaricomycete-specific protein with a putative DNA-binding domain. The chd1-1 mutation and targeted disruption of wtr1 hamper the ability of P. ostreatus to biodegrade wood lignin. Examination of the effects of the aforementioned mutation and disruption on the expression of certain MnP/VP genes suggests that a complex mechanism underlies the ligninolytic system in P. ostreatus.


Asunto(s)
Proteínas Fúngicas/genética , Lignina/metabolismo , Mutación , Pleurotus/genética , Biodegradación Ambiental , Proteínas Fúngicas/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Pleurotus/clasificación , Pleurotus/aislamiento & purificación , Pleurotus/metabolismo , Madera/metabolismo , Madera/microbiología
17.
Fungal Genet Biol ; 109: 7-15, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29030267

RESUMEN

Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Carbono/metabolismo , Coprinus/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxisomas/metabolismo , Pleurotus/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Evolución Biológica , Biotransformación , Coprinus/genética , Coprinus/crecimiento & desarrollo , Proteínas Fúngicas/genética , Genes Fúngicos , Mutagénesis , Peroxisomas/genética , Pleurotus/genética , Pleurotus/crecimiento & desarrollo
18.
Planta ; 246(2): 337-349, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28421330

RESUMEN

MAIN CONCLUSION: Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.


Asunto(s)
Carboxiliasas/metabolismo , Lignina/metabolismo , Oryza/enzimología , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Biocombustibles , Biomasa , Vías Biosintéticas , Carboxiliasas/genética , Pared Celular/metabolismo , Regulación hacia Abajo , Ingeniería Genética , Lignina/química , Oryza/citología , Oryza/genética , Oryza/crecimiento & desarrollo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regulación hacia Arriba
19.
Phytochem Anal ; 26(2): 105-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25376900

RESUMEN

INTRODUCTION: Hesperidin, a flavonoid known to have important pharmacological effects, accumulates particularly in the peels of satsuma mandarin (Citrus unshiu). Although histochemical studies have suggested that hesperidin forms crystals in some tissues of the Rutaceae and Umbelliferae, there has been no rigorous in situ detection or identification of hesperidin crystals in C. unshiu. OBJECTIVE: To characterise the chemical component of the crystals found in C. unshiu peels using Raman microscopy. METHODS: Sections of C. unshiu peels were made. The distribution and morphology of crystals in the sections were analysed microscopically. Raman microscopy was used to detect hesperidin in the sections directly. RESULTS: The crystals were more abundant in immature peel and were observed particularly in areas surrounding vascular bundles, around the border between the flavedo and albedo layers and just below the epidermal cells. In the morphological analysis by scanning electron microscopy, needle-shaped crystals aggregated and formed clusters of spherical crystals. Spectra obtained by Raman microscopy of the crystals in the peel sections were consistent with those of the hesperidin standard. CONCLUSION: This study showed the detailed distribution of crystals in C. unshiu peels and their main component was identified using Raman microscopy to be hesperidin for the first time.


Asunto(s)
Citrus/química , Hesperidina/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Citrus/ultraestructura , Frutas/química , Frutas/ultraestructura , Hesperidina/química , Microscopía Electrónica de Rastreo , Extractos Vegetales/química
20.
Can J Physiol Pharmacol ; 92(5): 351-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784468

RESUMEN

Neprilysin (NEP) is one of the candidate amyloid ß protein (Aß) degrading enzymes affecting brain Aß clearance. This enzyme declines in the brain with age, which leads to the increased Aß deposition in Alzheimer's disease (AD). Pharmacological activation of NEP during the aging process, therefore, represents a potential strategy to prevent the development of AD. To examine the influence of nobiletin on neprilysin activity, we measured cellular NEP activity in SK-N-SH cells. Moreover, NEP expression was examined by using reverse transcription - polymerase chain reaction and Western blotting. Measurement of cellular NEP activity showed that nobiletin stimulated this in a dose- and time-dependent manner in SK-N-SH cells. Moreover, nobiletin increased the expression of NEP mRNA, and then the levels of NEP protein, also in a dose- and time-dependent manner. Our findings showed that nobiletin promoted NEP gene and protein expression, resulting in enhancement of cellular NEP activity in SK-N-SH cells. This compound could be a novel Aß-degrading compound for use in the development of disease-modifying drugs to prevent and (or) cure AD.


Asunto(s)
Antioxidantes/farmacología , Citrus , Flavonas/farmacología , Neprilisina/metabolismo , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Neprilisina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA