Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31399543

RESUMEN

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
J Immunol ; 201(7): 2094-2106, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30104245

RESUMEN

IL-2 has been used to treat diseases ranging from cancer to autoimmune disorders, but its concurrent immunostimulatory and immunosuppressive effects hinder efficacy. IL-2 orchestrates immune cell function through activation of a high-affinity heterotrimeric receptor (composed of IL-2Rα, IL-2Rß, and common γ [γc]). IL-2Rα, which is highly expressed on regulatory T (TReg) cells, regulates IL-2 sensitivity. Previous studies have shown that complexation of IL-2 with the JES6-1 Ab preferentially biases cytokine activity toward TReg cells through a unique mechanism whereby IL-2 is exchanged from the Ab to IL-2Rα. However, clinical adoption of a mixed Ab/cytokine complex regimen is limited by stoichiometry and stability concerns. In this study, through structure-guided design, we engineered a single agent fusion of the IL-2 cytokine and JES6-1 Ab that, despite being covalently linked, preserves IL-2 exchange, selectively stimulating TReg expansion and exhibiting superior disease control to the mixed IL-2/JES6-1 complex in a mouse colitis model. These studies provide an engineering blueprint for resolving a major barrier to the implementation of functionally similar IL-2/Ab complexes for treatment of human disease.


Asunto(s)
Anticuerpos/metabolismo , Enfermedades Autoinmunes/inmunología , Colitis/inmunología , Citocinas/metabolismo , Inmunoterapia/métodos , Receptores de Interleucina-2/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos/genética , Enfermedades Autoinmunes/terapia , Proliferación Celular , Células Cultivadas , Colitis/terapia , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Activación de Linfocitos , Ratones , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética
3.
Biophys J ; 117(3): 500-508, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31349993

RESUMEN

Proteins are inherently dynamic, flexible molecules that execute precise conformational changes to perform their functions, but existing techniques to directly measure relevant structural changes in solution at room temperature remain limited. Here, we demonstrate a structural technique using second-harmonic generation and two-photon fluorescence under single-laser excitation to map both the mean angular orientation and the distribution width of a probe at various sites throughout the protein with high sensitivity. Our work resolves distinct dihydrofolate reductase (DHFR) ligand-protein conformations, allows interrogation of regions unresolvable by other techniques, and reveals structural differences between DHFR and a point mutant (DHFR-G121V). The technique, angular mapping of protein structure, enables direct and rapid determination of previously unseen aspects of protein structure in a benchtop optical system.


Asunto(s)
Dinámicas no Lineales , Imagen Óptica , Tetrahidrofolato Deshidrogenasa/química , Dominio Catalítico , Mutación/genética , Mutación Puntual/genética , Tetrahidrofolato Deshidrogenasa/genética
4.
J Am Chem Soc ; 139(9): 3417-3429, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28151657

RESUMEN

A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.


Asunto(s)
Inhibinas/antagonistas & inhibidores , Termodinámica , Triazoles/farmacología , Cristalografía por Rayos X , Humanos , Inhibinas/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Factores de Tiempo , Triazoles/química
5.
Phys Chem Chem Phys ; 19(5): 3722-3728, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28098287

RESUMEN

Second Harmonic Generation (SHG) has emerged as a highly sensitive probe of protein conformation. SHG can also be used to determine the tilt angle of an SHG-active moiety bound to a surface-adsorbed protein through polarization-dependent measurements. However, due to the coherent nature of SHG, interference occurs between the SHG produced by the SHG-active moieties and background sources at a solid-liquid interface, obscuring the signal of interest. In order to separate the protein-specific signal from the background signal, the phase difference between these two different sources of SHG must be determined. Although the phase difference can be obtained through a conventional interferometric approach involving a phase-modulated SHG source external to the sample, it can be sensitive to drift and other instabilities. We present here a simple, convenient, and crucially, model-independent method to determine the phase difference for any system in which the intensity of SHG-active moieties can be varied. We demonstrate the approach with time-resolved measurements of an SHG-active labeled protein binding to a supported lipid bilayer surface using a total internal reflection (TIR) geometry. This approach requires no additional optics beyond what is required to measure SHG and is highly stable since the interferometry occurs in situ, within the sample over a nanometer length scale, rather than external to it. To validate our measurements and the general approach, we constructed a dual-beam, external SHG interferometer in a TIR geometry. We also validated our approach by applying the in situ method to previously published measurements of the phase difference, obtaining the same values without recourse to a specific adsorption model.

6.
J Biol Chem ; 290(46): 27582-93, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26396193

RESUMEN

Proteins are structurally dynamic molecules that perform specialized functions through unique conformational changes accessible in physiological environments. An ability to specifically and selectively control protein function via conformational modulation is an important goal for development of novel therapeutics and studies of protein mechanism in biological networks and disease. Here we applied a second-harmonic generation-based technique for studying protein conformation in solution and in real time to the intrinsically disordered, Parkinson disease related protein α-synuclein. From a fragment library, we identified small molecule modulators that bind to monomeric α-synuclein in vitro and significantly reduce α-synuclein aggregation in a neuronal cell culture model. Our results indicate that the conformation of α-synuclein is linked to the aggregation of protein in cells. They also provide support for a therapeutic strategy of targeting specific conformations of the protein to suppress or control its aggregation.


Asunto(s)
Antiparkinsonianos/farmacología , Agregado de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , alfa-Sinucleína/química , Antiparkinsonianos/química , Antiparkinsonianos/aislamiento & purificación , Línea Celular Tumoral , Humanos , Ligandos , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación
7.
Anal Chem ; 88(21): 10482-10489, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696827

RESUMEN

There is a high demand for characterizing oligonucleotide structural changes associated with binding interactions as well as identifying novel binders that modulate their structure and function. In this study, second-harmonic generation (SHG) was used to study RNA and DNA oligonucleotide conformational changes associated with ligand binding. For this purpose, we developed an avidin-based biotin capture surface based on a supported lipid bilayer membrane. The technique was applied to two well-characterized aptamers, both of which undergo conformational changes upon binding either a protein or a small molecule ligand. In both cases, SHG was able to resolve conformational changes in these oligonucleotides sensitively and specifically, in solution and in real time, using nanogram amounts of material. In addition, we developed a competition assay for the oligonucleotides between the specific ligands and known, nonspecific binders, and we demonstrated that intercalators and minor groove binders affect the conformation of the DNA and RNA oligonucleotides in different ways upon binding and subsequently block specific ligand binding in all cases. Our work demonstrates the broad potential of SHG for studying oligonucleotides and their conformational changes upon interaction with ligands. As SHG offers a powerful, high-throughput screening approach, our results here also open an important new avenue for identifying novel chemical probes or sequence-targeted drugs that disrupt or modulate DNA or RNA structure and function.


Asunto(s)
ADN/química , Sustancias Intercalantes/farmacología , Membrana Dobles de Lípidos/química , Oligonucleótidos/química , ARN/química , Evaluación Preclínica de Medicamentos/instrumentación , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ligandos , Conformación de Ácido Nucleico
8.
Biophys J ; 109(4): 806-15, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26287632

RESUMEN

We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein's structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.


Asunto(s)
Imagen Óptica/métodos , Conformación Proteica , Calmodulina/química , Cromatografía Liquida , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos/química , Proteínas de Unión a Maltosa/química , Modelos Moleculares , Movimiento (Física) , Mutación , Soluciones , Espectrometría de Masas en Tándem , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética
9.
J Phys Chem B ; 112(47): 15103-7, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-18928314

RESUMEN

Second-harmonic generation (SHG) is highly sensitive to the net, average orientation of SH-active molecules on surfaces and has recently emerged as a technique for detecting biomolecules and their conformational changes. As most biomolecules are not intrinsically SH-active, they must be labeled with probes to render them detectable. To date, exogenous probes have been used to do this, but second-harmonic-active unnatural amino acids offer important advantages for the long-range goal of precisely and directly determining structural changes in real time and may be used for both buried and surface sites. Results of the first known SH-active unnatural amino acid, Aladan, are presented here. Aladan is found to be SH-active by detecting it at an interface, both alone and incorporated into the B1 domain of protein G (GB1), a globular immunoglobulin-binding protein, at both buried and exposed sites. The tilt angle of Aladan alone adsorbed on a mica surface is determined by polarization experiments, and its nonlinear polarizability alpha((2)) is found to be ca. 10(-30) esu. Aladan GB1 mutants are detectable by SHG, either when coupled covalently to a derivatized glass surface or bound to IgG immobilized via protein A. Addition of an Fc domain to this GB1 complex causes a small but defined change in the SH signal when Aladan is incorporated at site Ala(24), but not at Leu(7), consistent with a local conformational change of GB1. This structural change is not apparent in either X-ray crystallography or fluorescence studies, demonstrating that SHG can detect subtle orientational changes, including protein-protein interactions in which no significant rearrangements occur.


Asunto(s)
Aminoácidos/química , Sondas Moleculares/química , Propiedades de Superficie
10.
FEBS Open Bio ; 8(9): 1412-1423, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30186743

RESUMEN

Many clinically approved protein kinase inhibitors stabilize an inactive conformation of their kinase target. Such inhibitors are generally highly selective compared to active conformation inhibitors, and consequently, general methods to identify inhibitors that stabilize an inactive conformation are much sought after. Here, we have applied a high-throughput, second-harmonic generation (SHG)-based conformational approach to identify small molecule stabilizers of the inactive conformation of interleukin-2-inducible T-cell kinase (ITK). A single-site cysteine mutant of the ITK kinase domain was created, labeled with an SHG-active dye, and tethered to a supported lipid bilayer membrane. Fourteen tool compounds, including stabilizers of the inactive and active conformations as well as nonbinders, were first examined for their effect on the conformation of the labeled ITK protein in the SHG assay. As a result, inactive conformation inhibitors were clearly distinguished from active conformation inhibitors by the intensity of SHG signal. Utilizing the SHG assay developed with the tool compounds described above, we identified the mechanism of action of 22 highly selective, inactive conformation inhibitors within a group of 105 small molecule inhibitors previously identified in a high-throughput biochemical screen. We describe here the first use of SHG for identifying and classifying inhibitors that stabilize an inactive vs. an active conformation of a protein kinase, without the need to determine costructures by X-ray crystallography. Our results suggest broad applicability to other proteins, particularly with single-site labels reporting on specific protein movements associated with selectivity.

11.
Methods Enzymol ; 610: 167-190, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30390798

RESUMEN

Second-harmonic generation (SHG) has recently emerged as a biophysical tool for conformational sensing of a target biomolecule upon binding to ligands such as small molecules, fragments, proteins, peptides, and oligonucleotides. To date, SHG has been used to measure conformational changes of targets such as soluble proteins, protein complexes, intrinsically disordered proteins, peripheral and integral membrane proteins, peptides, and oligonucleotides upon binding of ligands over a wide range of affinities. In this chapter, we will provide a technology overview, detailed protocols for optimizing assays and screening, practical considerations, and an example case study to guide the reader in developing robust and informative measurements using the Biodesy Delta SHG platform.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Oligonucleótidos/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Animales , Descubrimiento de Drogas/instrumentación , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Ligandos , Conformación de Ácido Nucleico/efectos de los fármacos , Oligonucleótidos/química , Péptidos/química , Conformación Proteica/efectos de los fármacos , Proteínas/química
12.
Nat Commun ; 8(1): 781, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974687

RESUMEN

Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.


Asunto(s)
Efrina-B2/metabolismo , Virus Nipah/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Regulación Alostérica , Anticuerpos Monoclonales/metabolismo , Medición de Intercambio de Deuterio , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Coloración Negativa , Unión Proteica , Multimerización de Proteína
13.
PLoS One ; 11(11): e0165983, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832137

RESUMEN

MLKL is a pore forming pseudokinase involved in the final stage of necroptosis, a form of programmed cell death. Its phosphorylation by RIPK3 is necessary for triggering necroptosis but not for triggering apoptosis, which makes it a unique target for pharmacological inhibition to block necroptotic cell death. This mechanism has been described as playing a role in disease progression in neurodegenerative and inflammatory diseases. A type II kinase inhibitor (cpd 1) has been described that reportedly binds to the MLKL pseudokinase domain and prevents necroptosis. Here we describe five compounds that bind to the MLKL ATP-binding site, however the four MLKL-selective compounds have no activity in rescuing cells from necroptosis. We use kinase selectivity panels, crystallography and a new conformationally sensitive method of measuring protein conformational changes (SHG) to confirm that the one previously reported compound that can rescue cells (cpd 1) is a non-selective type II inhibitor that also inhibits the upstream kinase RIPK1. Although this compound can shift the GFE motif of the activation loop to an "out" position, the accessibility of the key residue Ser358 in the MLKL activation loop is not affected by compound binding to the MLKL active site. Our studies indicate that an ATP-pocket inhibitor of the MLKL pseudokinase domain does not have any impact on the necroptosis pathway, which is contrary to a previously reported study.


Asunto(s)
Adenosina Trifosfato/metabolismo , Muerte Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células Jurkat , Modelos Moleculares , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Proteínas Quinasas/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
14.
Phys Chem Chem Phys ; 9(42): 5704-11, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17960260

RESUMEN

SHG and sum-frequency generation (SFG) are surface-selective, nonlinear optical techniques whose ability to measure the average tilt angle of molecules on surfaces is well known in non-biological systems. By labeling molecules with a second-harmonic-active dye probe, SHG detection is extended to any biological molecule. The method has been used in previous work to detect biomolecules at an interface and their ligand-induced conformational changes. Here I demonstrate that SHG can be used to study structural motion quantitatively using a probe placed at a specific site (Cys-77) in adenylate kinase, a protein. The protein is also labeled non-site-specifically via amines. Labeled protein is absorbed to a surface and a baseline SH signal is measured. Upon introducing ATP, AMP or a specific inhibitor, AP(5)A, the baseline signal changes depending on the ligand and the labeling site. In particular, a substantial change in SH intensity is produced upon binding ATP to the amine-labeled protein, consistent with the X-ray crystal structures. In contrast, SHG polarization measurements are used to quantitatively determine that no rotation occurs at site Cys-77, in agreement with the lack of motion observed at this site in the X-ray crystal structures. A method for building a global map of conformational change in real time and space is proposed using a set of probes placed at different sites in a biomolecule. For this purpose, SH-active unnatural amino acids are attractive complements to exogenous labels.


Asunto(s)
Conformación Proteica , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Adenilato Quinasa/química , Cristalografía por Rayos X , Cisteína/química , Fosfatos de Dinucleósidos/química , Modelos Moleculares
15.
J Chem Phys ; 125(7): 074701, 2006 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-16942358

RESUMEN

An ability to detect and track conformational change in real time is essential to understanding the dynamic relationship between structure and function in biological molecules. Here I show that second-harmonic generation (SHG), a surface-selective technique, offers a new means to probe structural dynamics. A protein, calmodulin, was labeled with a second-harmonic-active dye and immobilized to a surface. Although neither the labeling nor the immobilization was done in a site-specific manner, an overall net orientation of the labels was produced relative to the surface plane. Conformational change of the protein induced by calcium alters the average tilt angle of the labels and causes a change in the intensity of second-harmonic radiation generated by the surface. As SHG is spatially and temporally coherent and depends quantitatively on the structural details of a surface, the method described here should serve as the starting point for more detailed studies of the mechanism of conformational change in molecules, as well as related topics such as protein folding. SHG's surface selectivity also suggests its use in a range of biological applications which require detection of surface-bound molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA