Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033323

RESUMEN

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

2.
Respir Res ; 25(1): 168, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637766

RESUMEN

BACKGROUND: The COVID-19 pandemic has increased the incidence of ventilator-associated pneumonia (VAP) among critically ill patients. However, a comparison of VAP incidence in COVID-19 and non-COVID-19 cohorts, particularly in a context with a high prevalence of multidrug-resistant (MDR) organisms, is lacking. MATERIAL AND METHODS: We conducted a single-center, mixed prospective and retrospective cohort study comparing COVID-19 patients admitted to the intensive care unit (ICU) of the "Città della Salute e della Scienza" University Hospital in Turin, Italy, between March 2020 and December 2021 (COVID-19 group), with a historical cohort of ICU patients admitted between June 2016 and March 2018 (NON-COVID-19 group). The primary objective was to define the incidence of VAP in both cohorts. Secondary objectives were to evaluate the microbial cause, resistance patters, risk factors and impact on 28 days, ICU and in-hospital mortality, duration of ICU stay, and duration of hospitalization). RESULTS: We found a significantly higher incidence of VAP (51.9% - n = 125) among the 241 COVID-19 patients compared to that observed (31.2% - n = 78) among the 252 NON-COVID-19 patients. The median SOFA score was significantly lower in the COVID-19 group (9, Interquartile range, IQR: 7-11 vs. 10, IQR: 8-13, p < 0.001). The COVID-19 group had a higher prevalence of Gram-positive bacteria-related VAP (30% vs. 9%, p < 0.001), but no significant difference was observed in the prevalence of difficult-to-treat (DTR) or MDR bacteria. ICU and in-hospital mortality in the COVID-19 and NON-COVID-19 groups were 71% and 74%, vs. 33% and 43%, respectively. The presence of COVID-19 was significantly associated with an increased risk of 28-day all-cause hospital mortality (Hazard ratio, HR: 7.95, 95% Confidence Intervals, 95% CI: 3.10-20.36, p < 0.001). Tracheostomy and a shorter duration of mechanical ventilation were protective against 28-day mortality, while dialysis and a high SOFA score were associated with a higher risk of 28-day mortality. CONCLUSION: COVID-19 patients with VAP appear to have a significantly higher ICU and in-hospital mortality risk regardless of the presence of MDR and DTR pathogens. Tracheostomy and a shorter duration of mechanical ventilation appear to be associated with better outcomes.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Humanos , COVID-19/epidemiología , Enfermedad Crítica/epidemiología , Pandemias , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/epidemiología , Neumonía Asociada al Ventilador/microbiología , Estudios Prospectivos , Estudios Retrospectivos
3.
J Clin Med ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930073

RESUMEN

Background: The efficacy of veno-venous extracorporeal membrane oxygenation (VV-ECMO) as rescue therapy for refractory COVID-19-related ARDS (C-ARDS) is still debated. We describe the cohort of C-ARDS patients treated with VV-ECMO at our ECMO center, focusing on factors that may affect in-hospital mortality and describing the time course of lung mechanics to assess prognosis. Methods: We performed a prospective observational study in the intensive care unit at the "Città della Salute e della Scienza" University Hospital in Turin, Italy, between March 2020 and December 2021. Indications and management of ECMO followed the Extracorporeal Life Support Organization (ELSO) guidelines. Results: The 60-day in-hospital mortality was particularly high (85.4%). Non-survivor patients were more frequently treated with non-invasive ventilatory support and steroids before ECMO (95.1% vs. 57.1%, p = 0.018 and 73.2% vs. 28.6%, p = 0.033, respectively), while hypertension was the only pre-ECMO factor independently associated with in-hospital mortality (HR: 2.06, 95%CI: 1.06-4.00). High rates of bleeding (85.4%) and superinfections (91.7%) were recorded during ECMO, likely affecting the overall length of ECMO (18 days, IQR: 10-24) and the hospital stay (32 days, IQR: 24-47). Static lung compliance was lower in non-survivors (p = 0.031) and differed over time (p = 0.049), decreasing by 48% compared to initial values in non-survivors. Conclusions: Our data suggest the importance of considering NIS among the common ECMO eligibility criteria and changes in lung compliance during ECMO as a prognostic marker.

4.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38929061

RESUMEN

Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that inhibition of mitochondrial monoamine oxidases could improve some functional and biohumoral markers of the pathology. In the present study we report the use of dystrophic mdx mice to evaluate the efficacy of a dual monoamine oxidase B (MAO-B)/semicarbazide-sensitive amine oxidase (SSAO) inhibitor, PXS-5131, in reducing inflammation and fibrosis and improving muscle function. We found that a one-month treatment starting at three months of age was able to decrease reactive oxygen species (ROS) production, fibrosis, and inflammatory infiltrate in the tibialis anterior (TA) and diaphragm muscles. Importantly, we also observed a marked improvement in the capacity of the gastrocnemius muscle to maintain its force when challenged with eccentric contractions. Upon performing a bulk RNA-seq analysis, PXS-5131 treatment affected the expression of genes involved in inflammatory processes and tissue remodeling. We also studied the effect of prolonged treatment in older dystrophic mice, and found that a three-month administration of PXS-5131 was able to greatly reduce the progression of fibrosis not only in the diaphragm but also in the heart. Taken together, these results suggest that PXS-5131 is an effective inhibitor of fibrosis and inflammation in dystrophic muscles, a finding that could open a new therapeutic avenue for DMD patients.

5.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458178

RESUMEN

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Asunto(s)
Vesículas Extracelulares , Células Madre Hematopoyéticas , NADP/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/fisiología , Autorrenovación de las Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA