Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Intervalo de año de publicación
1.
Circ Res ; 130(5): 694-707, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100822

RESUMEN

BACKGROUND: Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation. METHODS: Using a hypothesis-free RNA-seq approach, we investigated potential molecular targets implicated in energy metabolism mediating CB sensitization and its regulation of sympathetic outflow in experimental hypertension. Identified targets were characterized using molecular and functional techniques assessing peripheral chemoreflex sensitivity in situ and in vivo. RESULTS: We discovered GLP1R (glucagon-like peptide-1 receptor) expression in the CBs of rat and human and showed that its decreased expression is linked to sympathetic hyperactivity in rats with cardiometabolic disease. We demonstrate GLP1R to be localized to CB chemosensory cells, while targeted administration of GLP1R agonist to the CB lowered its basal discharge and attenuated chemoreflex-evoked blood pressure and sympathetic responses. Importantly, hyperglycemia-induced peripheral chemoreflex sensitization and associated basal sympathetic overactivity were abolished by GLP1R activation in the CB suggesting a role in a homeostatic response to high blood glucose. CONCLUSIONS: We show that GLP1 (glucagon-like peptide-1) modulates the peripheral chemoreflex acting on the CB, supporting this organ as a multimodal receptor. Our findings pinpoint CBs as potential targets for ameliorating excessive sympathetic activity using GLP1R agonists in the hypertensive-diabetic condition.


Asunto(s)
Cuerpo Carotídeo , Hipertensión , Animales , Presión Sanguínea , Cuerpo Carotídeo/metabolismo , Glucosa/metabolismo , Ratas , Ratas Endogámicas SHR
2.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35264016

RESUMEN

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Asunto(s)
Colinérgicos , Norepinefrina , Adrenérgicos , Animales , Ratones , Miocitos Cardíacos , Proteínas de Transporte Vesicular de Acetilcolina/genética
3.
Am J Physiol Heart Circ Physiol ; 323(2): H322-H335, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714175

RESUMEN

Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T-cell activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cell-linked effector mechanisms. Female (8 wk old) C57BL/6J mice received testosterone (48 mg/kg/wk) for 8 wk. Male mice were used for phenotypical comparisons. The hormone treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 wk, testosterone decreased endothelium-dependent vasodilation and increased peripheral Th17 cells. After 24 wk, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild-type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune-cell balance are important in the GAHT in transmasculine people.NEW & NOTEWORTHY Sex hormone-induced cardiovascular events are important undesirable effects in transgender people under GAHT. Studies addressing the cardiovascular impact of GAHT will certainly contribute to improve healthcare services offered to this population. Our study showing that vascular dysfunction, via Th17 cell-related mechanisms, precedes increased blood pressure induced by testosterone in a GAHT mouse model, reveals potential mechanisms involved in GAHT-related cardiovascular events and may provide new markers/targets for clinical practices in transmasculine people.


Asunto(s)
Enfermedades Cardiovasculares , Testosterona , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Hormonas Esteroides Gonadales , Proteínas de Homeodominio , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Th17
4.
FASEB J ; 35(10): e21886, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34473369

RESUMEN

The cardiac circadian clock is responsible for the modulation of different myocardial processes, and its dysregulation has been linked to disease development. How this clock machinery is regulated in the heart remains an open question. Because noradrenaline (NE) can act as a zeitgeber in cardiomyocytes, we tested the hypothesis that adrenergic signaling resets cardiac clock gene expression in vivo. In its anti-phase with Clock and Bmal1, cardiac Per1 abundance increased during the dark phase, concurrent with the rise in heart rate and preceded by an increase in NE levels. Sympathetic denervation altered Bmal1 and Clock amplitude, while Per1 was affected in both amplitude and oscillatory pattern. We next treated mice with a ß-adrenergic receptor (ß-AR) blocker. Strikingly, the ß-AR blockade during the day suppressed the nocturnal increase in Per1 mRNA, without altering Clock or Bmal1. In contrast, activating ß-AR with isoproterenol (ISO) promoted an increase in Per1 expression, demonstrating its responsiveness to adrenergic input. Inhibitors of ERK1/2 and CREB attenuated ISO-induced Per1 expression. Upstream of ERK1/2, PI3Kγ mediated ISO induction of Per1 transcription, while activation of ß2-AR, but not ß1-AR induced increases in ERK1/2 phosphorylation and Per1 expression. Consistent with the ß2-induction of Per1 mRNA, ISO failed to activate ERK1/2 and elevate Per1 in the heart of ß2-AR-/- mice, whereas a ß2-AR antagonist attenuated the nocturnal rise in Per1 expression. Our study established a link between NE/ß2-AR signaling and Per1 oscillation via the PI3Ky-ERK1/2-CREB pathway, providing a new framework for understanding the physiological mechanism involved in resetting cardiac clock genes.


Asunto(s)
Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Proteínas Circadianas Period/biosíntesis , Receptores Adrenérgicos beta 2/metabolismo , Factores de Transcripción ARNTL/biosíntesis , Factores de Transcripción ARNTL/genética , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Proteínas CLOCK/biosíntesis , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptores Adrenérgicos beta 2/genética
5.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296286

RESUMEN

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Asunto(s)
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrógenos/deficiencia , Corazón/inervación , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ovariectomía , Transducción de Señal , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas de Transporte Vesicular de Acetilcolina/genética
6.
J Physiol ; 598(3): 455-471, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31721215

RESUMEN

KEY POINTS: Respiratory sinus arrhythmia is physiological pacing of the heart that disappears in cardiovascular disease and is associated with poor cardiac prognosis. In heart failure, cardiac pacing has little, if any, variation in rate at rest. We proposed that reinstatement of respiratory sinus arrhythmia would improve cardiac function in rats with heart failure. Heart failure rats were paced daily for 2 weeks with either respiratory sinus arrhythmia or paced monotonically at a matched heart rate; cardiac function was measured using non-invasive echocardiography. Cardiac output and stroke volume were increased in rats paced with respiratory sinus arrhythmia compared to monotonic pacing, via improvement in systolic function that persisted beyond the pacing treatment period. We propose that respiratory sinus arrhythmia pacing reverse-remodels the heart in heart failure and is worth considering as a new form of cardiac pacemaking. ABSTRACT: Natural pacing of the heart results in heart rate variability, an indicator of good health and cardiac function. A contributor to heart rate variability is respiratory sinus arrhythmia or RSA - an intrinsic respiratory modulated pacing of heart rate. The loss of RSA is associated with poor cardiac prognosis and sudden cardiac death. We tested if reinstatement of respiratory-modulated heart rate (RMH) would improve cardiac performance in heart failure. Heart failure was induced in Wistar rats by ligation of the left anterior descending coronary artery. Rats were unpaced, monotonically paced and RMH paced; the latter had the same average heart rate as the monotonically paced animals. Cardiac function was assessed non-invasively using echocardiography before and after 2 weeks of daily pacing at a time when pacing was turned off. RMH increased cardiac output by 20 ± 8% compared to monotonic pacing (-3 ± 5%; P < 0.05). This improvement in cardiac output was associated with an increase in stroke volume compared to monotonic pacing (P = 0.03) and improvement in circumferential strain (P = 0.02). Improvements in ejection fraction (P = 0.08) and surrogate measures of left ventricle compliance did not reach significance. Increases in contractility (P < 0.05) and coronary blood flow (P < 0.05) were seen in vitro during variable pacing to mimic RMH. Thus, in rats with left ventricular dysfunction, chronic RMH pacing improved cardiac function through improvements in systolic function. As these improvements were made with pacing switched off, we propose the novel idea that RMH pacing causes reverse-remodelling.


Asunto(s)
Insuficiencia Cardíaca , Arritmia Sinusal Respiratoria , Disfunción Ventricular Izquierda , Animales , Gasto Cardíaco , Insuficiencia Cardíaca/terapia , Ratas , Ratas Wistar , Volumen Sistólico
7.
Lasers Med Sci ; 35(3): 567-572, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31396793

RESUMEN

To evaluate whether acute photobiomodulation can elicit a hypotensive effect in spontaneously hypertensive rats (SHR). Male SHR were submitted to the implantation of a polyethylene cannula into the femoral artery. After 24 h, baseline measurements of the hemodynamic parameters: systolic, diastolic, and mean arterial pressure, and heart rate were accomplished for 1 h. Afterwards, laser application was simulated, and the hemodynamic parameters were recorded for 1 h. In the same animal, the laser was applied at six different positions of the rat's abdomen, and the hemodynamic parameters were also recorded until the end of the hypotensive effect. The irradiation parameters were red wavelength (660 nm); average optical power of 100 mW; 56 s per point (six points); spot area of 0.0586 cm2; and irradiance of 1.71 W/cm2 yielding to a fluency of 96 J/cm2 per point. For measuring plasma NO levels, blood was collected before the recording, as well as immediately after the end of the mediated hypotensive effect. Photobiomodulation therapy was able to reduce the systolic arterial pressure in 69% of the SHR submitted to the application, displaying a decrease in systolic, diastolic, and mean arterial pressure. No change in heart rate was observed. Nevertheless, there was an increase in serum nitric oxide levels in the SHR responsive to photobiomodulation. Our results suggest that acute irradiation with a red laser at 660 nm can elicit a hypotensive effect in SHR, probably by a mechanism involving the release of NO, without changing the heart rate.


Asunto(s)
Hipertensión/radioterapia , Terapia por Luz de Baja Intensidad , Animales , Presión Sanguínea/efectos de la radiación , Frecuencia Cardíaca/efectos de la radiación , Hemodinámica/efectos de la radiación , Hipertensión/sangre , Hipertensión/fisiopatología , Masculino , Óxido Nítrico/sangre , Ratas , Ratas Endogámicas SHR
8.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G342-G348, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31314548

RESUMEN

There is a body of evidence that supports the notion that gut dysbiosis plays a role in the pathogenesis of cardiovascular diseases. Decreased cardiac function can reduce intestinal perfusion, resulting in morphological alterations, which may contribute to changes in the gut microbiota composition in patients with heart failure (HF). In this regard, a germane question is whether changes in gut microbiota composition are a cause or consequence of the cardiovascular disturbance. We tested the hypothesis that the development of HF, after myocardial infarction, would cause gut dysbiosis. Fecal samples were collected before and 6 wk after myocardial infarction or sham surgery. Gut microbiota were characterized by sequencing the bacterial 16S ribosomal DNA. The composition of bacterial communities in the fecal samples was evaluated by calculating three major ecological parameters: 1) the Chao 1 richness, 2) the Pielou evenness, and 3) the Shannon index. None of these indices was changed in either sham or HF rats. The Firmicutes/Bacteroidetes ratio was not altered in HF rats. The number of species in each phylum was also not different between sham and HF rats. ß-Diversity analysis showed that the composition of gut microbiota was not changed with the development of HF. Bacterial genera were grouped according to their major metabolic end-products (acetate, butyrate, and lactate), but no differences were observed in HF rats. Therefore, we conclude that HF induced by myocardial infarction does not affect gut microbiota composition, at least in rats, indicating that the dysbiosis observed in patients with HF may precede cardiovascular disturbance.NEW & NOTEWORTHY Our study demonstrated that, following myocardial infarction in rats, heart failure (HF) development did not affect the intestinal microbiota despite distinct differences reported in the gut microbiota of humans with HF. Our finding is consistent with the notion that dysbiosis observed in patients with HF may precede cardiovascular dysfunction and therefore offers potential for early diagnosis and treatment.


Asunto(s)
Disbiosis/microbiología , Heces/microbiología , Insuficiencia Cardíaca/fisiopatología , Intestinos/microbiología , Infarto del Miocardio/microbiología , Animales , Microbioma Gastrointestinal/genética , Insuficiencia Cardíaca/complicaciones , Intestinos/patología , Masculino , Microbiota/efectos de los fármacos , Ratas Wistar
9.
Exp Physiol ; 104(9): 1335-1342, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31161612

RESUMEN

NEW FINDINGS: What is the central question of this study? The traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation, which does not permit their individual study in different situations. What is the main finding and its importance? We have described a new surgical approach capable of selective denervation of the arterial (aortic and carotid) baroreceptors, keeping the carotid bodies (chemoreceptors) intact. It is understood that this technique might be a useful tool for investigating the relative role of the baro- and chemoreceptors in several physiological and pathophysiological conditions. ABSTRACT: Studies have demonstrated that the traditional surgical approach for sino-aortic denervation in rats leads to simultaneous carotid baroreceptor and chemoreceptor deactivation. The present study reports a new surgical approach to denervate the aortic and the carotid baroreceptors selectively, keeping the carotid bodies (peripheral chemoreceptors) intact. Wistar rats were subjected to specific aortic and carotid baroreceptor denervation (BAROS-X) or sham surgery (SHAM). Baroreflex activation was achieved by i.v. administration of phenylephrine, whereas peripheral chemoreflex activation was produced by i.v. administration of potassium cyanide. The SHAM and BAROS-X rats displayed significant hypertensive responses to phenylephrine administration. However, the reflex bradycardia following the hypertensive response caused by phenylephrine was remarkable in SHAM, but not significant in the BAROS-X animals, confirming the efficacy of the surgical procedure to abolish the baroreflex. In addition, the baroreflex activation elicited by phenylephrine increased carotid sinus nerve activity only in SHAM, but not in the BAROS-X animals, providing support to the notion that the baroreceptor afferents were absent. Instead, the classical peripheral chemoreflex hypertensive and bradycardic responses to potassium cyanide were similar in both groups, suggesting that the carotid body chemoreceptors were preserved after BAROS-X. In summary, we describe a new surgical approach in which only the baroreceptors are eliminated, while the carotid chemoreceptors are preserved. Therefore, it is understood that this procedure is potentially a useful tool for examining the relative roles of the arterial baroreceptors versus the chemoreceptors in several pathophysiological conditions, for instance, arterial hypertension and heart failure.


Asunto(s)
Aorta/cirugía , Arterias/cirugía , Cuerpo Carotídeo/cirugía , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Arterias/efectos de los fármacos , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/fisiología , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/fisiología , Desnervación/métodos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hipertensión/fisiopatología , Masculino , Fenilefrina/farmacología , Presorreceptores/efectos de los fármacos , Presorreceptores/fisiología , Ratas , Ratas Wistar
10.
J Physiol ; 596(15): 3201-3216, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29313987

RESUMEN

KEY POINTS: Carotid bodies play a critical role in maintaining arterial pressure during hypoxia and this has important implications when considering resection therapy of the carotid body in disease states such as hypertension. Curbing hypertension in patients whether resting or under stress remains a major global health challenge. We demonstrated previously the benefits of removing carotid body afferent input into the brain for both alleviating sympathetic overdrive and reducing blood pressure in neurogenic hypertension. We describe a new approach in rats for selective ablation of the carotid bodies that spares the functional integrity of the carotid sinus baroreceptors, and demonstrate the importance of the carotid bodies in the haemodynamic response to forced exercise, hypoxia and hypercapnia in conditions of hypertension. Selective ablation reduced blood pressure in hypertensive rats and re-set baroreceptor reflex function accordingly; the increases in blood pressure seen during exercise, hypoxia and hypercapnia were unaffected, abolished and augmented, respectively, after selective carotid body removal. The data suggest that carotid body ablation may trigger potential cardiovascular risks particularly during hypoxia and hypercapnia and that suppression rather than obliteration of their activity may be a more effective and safer route to pursue. ABSTRACT: The carotid body has recently emerged as a promising therapeutic target for treating cardiovascular disease, but the potential impact of carotid body removal on the dynamic cardiovascular responses to acute stressors such as exercise, hypoxia and hypercapnia in hypertension is an important safety consideration that has not been studied. We first validated a novel surgical approach to selectively resect the carotid bodies bilaterally (CBR) sparing the carotid sinus baroreflex. Second, we evaluated the impact of CBR on the cardiovascular responses to exercise, hypoxia and hypercapnia in conscious, chronically instrumented spontaneously hypertensive (SH) rats. The results confirm that our CBR technique successfully and selectively abolished the chemoreflex, whilst preserving carotid baroreflex function. CBR produced a sustained fall in arterial pressure in the SH rat of ∼20 mmHg that persisted across both dark and light phases (P < 0.001), with baroreflex function curves resetting around lower arterial pressure levels. The cardiovascular and respiratory responses to moderate forced exercise were similar between CBR and Sham rats. In contrast, CBR abolished the pressor response to hypoxia seen in Sham animals, although the increases in heart rate and respiration were similar between Sham and CBR groups. Both the pressor and the respiratory responses to 7% hypercapnia were augmented after CBR (P < 0.05) compared to sham. Our finding that the carotid bodies play a critical role in maintaining arterial pressure during hypoxia has important implications when considering resection therapy of the carotid body in disease states such as hypertension as well as heart failure with sleep apnoea.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipercapnia/fisiopatología , Hipertensión/fisiopatología , Hipoxia/fisiopatología , Condicionamiento Físico Animal/fisiología , Animales , Presión Sanguínea , Cuerpo Carotídeo/cirugía , Frecuencia Cardíaca , Masculino , Ratas Endogámicas SHR
11.
FASEB J ; 30(2): 688-701, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26481308

RESUMEN

Autonomic dysfunction is a characteristic of cardiac disease and decreased vagal activity is observed in heart failure. Rodent cardiomyocytes produce de novo ACh, which is critical in maintaining cardiac homeostasis. We report that this nonneuronal cholinergic system is also found in human cardiomyocytes, which expressed choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). Furthermore, VAChT expression was increased 3- and 1.5-fold at the mRNA and protein level, respectively, in ventricular tissue from patients with heart failure, suggesting increased ACh secretion in disease. We used mice with genetic deletion of cardiomyocyte-specific VAChT or ChAT and mice overexpressing VAChT to test the functional significance of cholinergic signaling. Mice deficient for VAChT displayed an 8% decrease in fractional shortening and 13% decrease in ejection fraction compared with angiotensin II (Ang II)-treated control animals, suggesting enhanced ventricular dysfunction and pathologic remodeling in response to Ang II. Similar results were observed in ChAT-deficient mice. Conversely, no decline in ventricular function was observed in Ang II-treated VAChT overexpressors. Furthermore, the fibrotic area was significantly greater (P < 0.05) in Ang II-treated VAChT-deficient mice (3.61 ± 0.64%) compared with wild-type animals (2.24 ± 0.11%). In contrast, VAChT overexpressing mice did not display an increase in collagen deposition. Our results provide new insight into cholinergic regulation of cardiac function, suggesting that a compensatory increase in cardiomyocyte VAChT levels may help offset cardiac remodeling in heart failure.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Remodelación Ventricular/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Células Cultivadas , Colina O-Acetiltransferasa/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Insuficiencia Cardíaca/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
12.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R612-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26843582

RESUMEN

Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective ß1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.


Asunto(s)
Aorta/inervación , Barorreflejo , Presión Sanguínea , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Animales , Terapia por Estimulación Eléctrica/métodos , Insuficiencia Cardíaca/diagnóstico , Frecuencia Cardíaca , Masculino , Ratas , Ratas Wistar , Resultado del Tratamiento
13.
Exp Mol Pathol ; 100(1): 167-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708424

RESUMEN

Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could work as a protective compensatory mechanism, helping tomaintain the dilated heart.We can hypothesize that inappropriate intercellular mechanical and electrical coupling associated with necrosis and/or apoptosis are important factors contributing to the transition to HF.


Asunto(s)
Uniones Adherentes/metabolismo , Cardiomegalia/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/fisiología , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Animales , Cadherinas/metabolismo , Cardiomegalia/complicaciones , Insuficiencia Cardíaca/etiología , Ventrículos Cardíacos/metabolismo , Masculino , Ratas Wistar
14.
J Physiol ; 593(4): 763-74, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25433077

RESUMEN

Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Generadores de Patrones Centrales , Silicio , Animales , Frecuencia Cardíaca , Humanos , Periodicidad
15.
Am J Physiol Heart Circ Physiol ; 309(4): H655-62, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26092977

RESUMEN

In cardiovascular diseases, sympathetic tone has been comprehensively studied, whereas parasympathetic tone has received minor attention. The vesicular ACh transporter (VAChT) knockdown homozygous (VAChT KD(HOM)) mouse is a useful model for examining the cardiocirculatory sympathovagal balance. Therefore, we investigated whether cholinergic dysfunction caused by reduced VAChT expression could adversely impact hemodynamic parameter [arterial pressure (AP) and heart rate (HR)] daily oscillation, baroreflex sensitivity, hemodynamic variability, sympathovagal balance, and cardiovascular reactivity to restraint stress. Wild-type and VAChT KD(HOM) mice were anesthetized for telemetry transmitter implantation, and APs and HRs were recorded 10 days after surgical recovery. Changes in HR elicited by methylatropine and propranolol provided the indexes of sympathovagal tone. Cardiovascular reactivity in response to a restraint test was examined 24 h after continuous recordings of AP and HR. VAChT KD(HOM) mice exhibited reduced parasympathetic and elevated sympathetic tone. Daily oscillations of AP and HR as well as AP variability were similar between groups. Nevertheless, HR variability, patterns with two dissimilar variations from symbolic analysis, and baroreflex sensitivity were reduced in VAChT KD(HOM) mice. The change in mean AP due to restraint stress was greater in VAChT KD(HOM) mice, whereas the tachycardic response was not. These findings demonstrate that the cholinergic dysfunction present in the VAChT KD(HOM) mouse did not adversely impact basal hemodynamic parameters but promoted autonomic imbalance, an attenuation of baroreflex sensitivity, and a greater pressure response to restraint stress. These results provide a framework for understanding how autonomic imbalance impacts cardiovascular function.


Asunto(s)
Presión Arterial , Sistema Nervioso Autónomo/metabolismo , Frecuencia Cardíaca , Corazón/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Potenciales de Acción , Animales , Sistema Nervioso Autónomo/fisiología , Barorreflejo , Corazón/inervación , Masculino , Ratones , Miocardio/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
16.
Brain Behav Immun ; 49: 140-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25986215

RESUMEN

The baroreflex is a critical physiological mechanism controlling cardiovascular function by modulating both the sympathetic and parasympathetic activities. Here, we report that electrical activation of the baroreflex attenuates joint inflammation in experimental arthritis induced by the administration of zymosan into the femorotibial cavity. Baroreflex activation combined with lumbar sympathectomy, adrenalectomy, celiac subdiaphragmatic vagotomy or splenectomy dissected the mechanisms involved in the inflammatory modulation, highlighting the role played by sympathetic inhibition in the attenuation of joint inflammation. From the immunological standpoint, baroreflex activation attenuates neutrophil migration and the synovial levels of inflammatory cytokines including TNF, IL-1ß and IL-6, but does not affect the levels of the anti-inflammatory cytokine IL-10. The anti-inflammatory effects of the baroreflex system are not mediated by IL-10, the vagus nerve, adrenal glands or the spleen, but by the inhibition of the sympathetic drive to the knee. These results reveal a novel physiological neuronal network controlling peripheral local inflammation.


Asunto(s)
Artritis/fisiopatología , Barorreflejo , Inflamación/fisiopatología , Articulación de la Rodilla/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Adrenalectomía , Animales , Artritis/inducido químicamente , Artritis/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Articulación de la Rodilla/patología , Masculino , Neutrófilos/metabolismo , Ratas , Ratas Wistar , Esplenectomía , Vagotomía , Zimosan
17.
Am J Physiol Heart Circ Physiol ; 305(2): H173-81, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23686710

RESUMEN

Exercise training (ExT) normalizes the increased sympathetic outflow in chronic heart failure (HF). The underlying mechanisms are not clearly understood. We hypothesized that ExT normalized the blunted central component of the baroreflex control of renal sympathetic nerve activity (RSNA) in HF. Four groups of rats [sham operated (sham)-sedentary (Sed), sham-ExT, HF-Sed, and HF-ExT] were used. HF was induced by left coronary artery ligation, and ExT consisted of 3 wk of treadmill running. In anesthetized rats, the decrease in RSNA in response to aortic depressor nerve stimulation (5-40 Hz) in the HF-Sed group was significantly lower than that in the sham-Sed group (-37 ± 7% vs. -63 ± 8% at 40 Hz, P < 0.05). In the HF-ExT group, responses in RSNA, mean arterial pressure (MAP), and heart rate (HR) were not significantly different from those in the sham-Sed or sham-ExT groups. ExT normalized blunted RSNA, MAP, and HR responses to bicuculline microinjections into the paraventricular nucleus (PVN) in rats with HF. Activation of the PVN by blockade of GABA receptors with bicuculline in normal control rats blunted the centrally component of the baroreflex arc. GABAA-α1 and -ß1 receptor protein expression were significantly lower (by 48% and 30%) in the HF-Sed group, but ExT normalized this difference between the HF and sham groups. These data suggest that one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of central integrative mechanisms, perhaps via improving the inhibitory GABAergic mechanism within the PVN, on the baroreflex arc.


Asunto(s)
Barorreflejo , Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Hemodinámica , Riñón/irrigación sanguínea , Núcleo Hipotalámico Paraventricular/fisiopatología , Reflejo Anormal , Sistema Nervioso Simpático/fisiopatología , Animales , Presión Arterial , Barorreflejo/efectos de los fármacos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Antagonistas del GABA/administración & dosificación , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Hemodinámica/efectos de los fármacos , Masculino , Microinyecciones , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Recuperación de la Función , Reflejo Anormal/efectos de los fármacos , Conducta Sedentaria , Sistema Nervioso Simpático/efectos de los fármacos , Factores de Tiempo
18.
Am J Physiol Regul Integr Comp Physiol ; 305(8): R908-16, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23948774

RESUMEN

Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Corazón/efectos de los fármacos , Sistema Nervioso Parasimpático/efectos de los fármacos , Bromuro de Piridostigmina/farmacología , Disfunción Ventricular/prevención & control , Animales , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Sistema Nervioso Parasimpático/fisiopatología , Bromuro de Piridostigmina/uso terapéutico , Ratas , Ratas Wistar , Nervio Vago/fisiopatología , Disfunción Ventricular/tratamiento farmacológico , Disfunción Ventricular/fisiopatología
19.
Nat Commun ; 14(1): 1725, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977675

RESUMEN

Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Ratas , Masculino , Animales , Receptores Purinérgicos P2X3 , Células Quimiorreceptoras/fisiología , Respiración
20.
Pflugers Arch ; 461(1): 23-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21107858

RESUMEN

The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , GMP Cíclico/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Óxido Nítrico/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Arginina/farmacología , Dimetilsulfóxido/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Neuronas/fisiología , Oxadiazoles/farmacología , Quinoxalinas/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Médula Espinal/fisiología , Estereoisomerismo , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA