Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(16): 4318-4335.e20, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38964327

RESUMEN

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Dexametasona , Monocitos , SARS-CoV-2 , Análisis de la Célula Individual , Humanos , Dexametasona/farmacología , Dexametasona/uso terapéutico , Monocitos/metabolismo , Monocitos/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Masculino , Femenino , Transcriptoma , Persona de Mediana Edad , Anciano , Glucocorticoides/uso terapéutico , Glucocorticoides/farmacología , Pulmón/patología , Adulto
2.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032429

RESUMEN

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Activación de Complemento , Proteoma , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Factores Quimiotácticos/metabolismo , Citotoxicidad Inmunológica , Células Endoteliales/virología , Femenino , Humanos , Activación de Linfocitos , Masculino , Microvasos/virología , Persona de Mediana Edad , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análisis de la Célula Individual , Adulto Joven
3.
Nat Immunol ; 22(10): 1256-1267, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34462601

RESUMEN

Innate lymphoid cells (ILCs) participate in tissue homeostasis, inflammation, and early immunity against infection. It is unclear how ILCs acquire effector function and whether these mechanisms differ between organs. Through multiplexed single-cell mRNA sequencing, we identified cKit+CD127hiTCF-1hi early differentiation stages of T-bet+ ILC1s. These cells were present across different organs and had the potential to mature toward CD127intTCF-1int and CD127-TCF-1- ILC1s. Paralleling a gradual loss of TCF-1, differentiating ILC1s forfeited their expansion potential while increasing expression of effector molecules, reminiscent of T cell differentiation in secondary lymphoid organs. The transcription factor Hobit was induced in TCF-1hi ILC1s and was required for their effector differentiation. These findings reveal sequential mechanisms of ILC1 lineage commitment and effector differentiation that are conserved across tissues. Our analyses suggest that ILC1s emerge as TCF-1hi cells in the periphery and acquire a spectrum of organ-specific effector phenotypes through a uniform Hobit-dependent differentiation pathway driven by local cues.


Asunto(s)
Diferenciación Celular/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Factores de Transcripción/inmunología , Animales , Femenino , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/inmunología , Linfocitos T/inmunología
4.
Immunity ; 56(8): 1778-1793.e10, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463581

RESUMEN

Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether specific anatomical niches exist within which preDCs differentiate toward immature cDCs. In situ photoconversion and Prtn3-based fate-tracking revealed that the LN medullary cords are preferential entry sites for preDCs, serving as specific differentiation niches. Repopulation and fate-tracking approaches demonstrated that the cDC1 network unfolded from the medulla along the vascular tree toward the paracortex. During inflammation, collective maturation and migration of resident cDC1s to the paracortex created discontinuity in the medullary cDC1 network and temporarily impaired responsiveness. The decrease in local cDC1 density resulted in higher Flt3L availability in the medullary niche, which accelerated cDC1 development to restore the network. Thus, the spatiotemporal development of the cDC1 network is locally regulated in dedicated LN niches via sensing of cDC1 densities.


Asunto(s)
Ganglios Linfáticos , Macrófagos , Diferenciación Celular , Células Dendríticas
5.
Immunity ; 55(10): 1813-1828.e9, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002023

RESUMEN

Lymphatic transport of molecules and migration of myeloid cells to lymph nodes (LNs) continuously inform lymphocytes on changes in drained tissues. Here, using LN transplantation, single-cell RNA-seq, spectral flow cytometry, and a transgenic mouse model for photolabeling, we showed that tissue-derived unconventional T cells (UTCs) migrate via the lymphatic route to locally draining LNs. As each tissue harbored a distinct spectrum of UTCs with locally adapted differentiation states and distinct T cell receptor repertoires, every draining LN was thus populated by a distinctive tissue-determined mix of these lymphocytes. By making use of single UTC lineage-deficient mouse models, we found that UTCs functionally cooperated in interconnected units and generated and shaped characteristic innate and adaptive immune responses that differed between LNs that drained distinct tissues. Lymphatic migration of UTCs is, therefore, a key determinant of site-specific immunity initiated in distinct LNs with potential implications for vaccination strategies and immunotherapeutic approaches.


Asunto(s)
Ganglios Linfáticos , Linfocitos T , Animales , Modelos Animales de Enfermedad , Inmunidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T
6.
Immunity ; 55(4): 656-670.e8, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35366396

RESUMEN

Reinvigoration of exhausted CD8+ T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Diferenciación Celular , Inmunoterapia , Recuento de Linfocitos
7.
Nat Rev Mol Cell Biol ; 16(12): 753-61, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26507169

RESUMEN

Lipids tailor membrane identities and function as molecular hubs in all cellular processes. However, the ways in which lipids modulate protein function and structure are poorly understood and still require systematic investigation. In this Innovation article, we summarize pioneering technologies, including lipid-overlay assays, lipid pull-down assays, affinity-purification lipidomics and the liposome microarray-based assay (LiMA), that will enable protein-lipid interactions to be deciphered on a systems level. We discuss how these technologies can be applied to the charting of system-wide networks and to the development of new pharmaceutical strategies.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Lipoproteínas/química , Liposomas/química , Análisis por Micromatrices/métodos , Proteínas/química , Animales , Humanos , Metabolismo de los Lípidos/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
RNA ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174298

RESUMEN

End-to-end RNA sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RT enzymes used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those that derive from group II self-splicing introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multi-step template switching reaction carried out by RT enzymes, in this case, by a well-characterized enzyme known as MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized and optimized the enzymatic nontemplated addition (NTA) reaction that occurs when the RT enzyme extends past the RNA 5'-terminus, and we determined the nucleotide specificity of the NTA reaction. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq starting from total human RNA and poly(A)-enriched RNA, with short and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, by employing mechanistic enzymology on RT enzymes and using them to modify RNA-seq technologies, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.

9.
Blood ; 143(8): 685-696, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37976456

RESUMEN

ABSTRACT: CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Recurrencia Local de Neoplasia/metabolismo , Linfocitos T , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/genética , Linfoma de Células B/terapia , Linfoma/metabolismo , Antígenos CD19 , Receptores de Antígenos de Linfocitos T
10.
Circ Res ; 135(4): 488-502, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38979610

RESUMEN

BACKGROUND: The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS: AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS: Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 (anti-CXC motif chemokine ligand 9) antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-ß (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-ß blockade using neutralizing anti-TGF-ß antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION: Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Aortitis , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Aortitis/genética , Aortitis/metabolismo , Aortitis/patología , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Humanos , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Ratones Endogámicos C57BL , Masculino , Células Cultivadas , Ratones Noqueados para ApoE , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Aorta Abdominal/metabolismo , Aorta Abdominal/patología
11.
Circ Res ; 132(5): 565-582, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744467

RESUMEN

BACKGROUND: In the past years, several studies investigated how distinct immune cell subsets affects post-myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu's influence. METHODS: We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and functional phenotyping to elucidate how the antigen-specific CD4+ T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post-myocardial infarction inflammation. RESULTS: Flow cytometry and scRNA-/TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, Tgfb1) or suppressor immune checkpoints (eg, Pdcd1), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas TH17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post-myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function. CONCLUSIONS: These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.


Asunto(s)
Infarto del Miocardio , Linfocitos T Reguladores , Ratones , Animales , Humanos , Miocardio/metabolismo , Infarto del Miocardio/metabolismo , Antígenos/metabolismo , Diferenciación Celular , Miosinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Inflamación/metabolismo , Factores de Transcripción Forkhead/genética
12.
Arterioscler Thromb Vasc Biol ; 44(8): 1852-1872, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38868941

RESUMEN

BACKGROUND: Atherosclerosis is driven by the infiltration of the arterial intima by diverse immune cells and smooth muscle cells (SMCs). CD8+ T cells promote lesion growth during atherosclerotic lesion development, but their role in advanced atherosclerosis is less clear. Here, we studied the role of CD8+ T cells and their effects on SMCs in established atherosclerosis. METHODS: CD8+ T cells were depleted in (SMC reporter) low-density lipoprotein receptor-deficient (Ldlr-/-) mice with established atherosclerotic lesions. Atherosclerotic lesion formation was examined, and single-cell RNA sequencing of aortic SMCs and their progeny was performed. Additionally, coculture experiments with primary aortic SMCs and CD8+ T cells were conducted. RESULTS: Although we could not detect differences in atherosclerotic lesion size, an increased plaque SMC content was noted in mice after CD8+ T-cell depletion. Single-cell RNA sequencing of aortic lineage-traced SMCs revealed contractile SMCs and a modulated SMC cluster, expressing macrophage- and osteoblast-related genes. CD8+ T-cell depletion was associated with an increased contractile but decreased macrophage and osteoblast-like gene signature in this modulated aortic SMC cluster. Conversely, exposure of isolated aortic SMCs to activated CD8+ T cells decreased the expression of genes indicative of a contractile SMC phenotype and induced a macrophage and osteoblast-like cell state. Notably, CD8+ T cells triggered calcium deposits in SMCs under osteogenic conditions. Mechanistically, we identified transcription factors highly expressed in modulated SMCs, including Runx1, to be induced by CD8+ T cells in cultured SMCs in an IFNγ (interferon-γ)-dependent manner. CONCLUSIONS: We here uncovered CD8+ T cells to control the SMC phenotype in atherosclerosis. CD8+ T cells promote SMC dedifferentiation and drive SMCs to adopt features of macrophage-like and osteoblast-like, procalcifying cell phenotypes. Given the critical role of SMCs in atherosclerotic plaque stability, CD8+ T cells could thus be explored as therapeutic target cells during lesion progression.


Asunto(s)
Aterosclerosis , Linfocitos T CD8-positivos , Desdiferenciación Celular , Modelos Animales de Enfermedad , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/inmunología , Ratones , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/inmunología , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Células Cultivadas , Masculino , Receptores de LDL/genética , Receptores de LDL/deficiencia , Fenotipo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Aorta/patología , Aorta/inmunología , Aorta/metabolismo , Técnicas de Cocultivo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/metabolismo
13.
Nature ; 571(7765): 419-423, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292545

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.


Asunto(s)
Regulación de la Expresión Génica/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Transcripción Genética/genética , Alquilación , Animales , Ciclo Celular , Citomegalovirus/fisiología , Metilación de ADN , Fibroblastos/metabolismo , Fibroblastos/virología , Cinética , Ratones , Regiones Promotoras Genéticas/genética , ARN/análisis , ARN/química , Compuestos de Sulfhidrilo/química
14.
Nature ; 563(7729): 121-125, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333624

RESUMEN

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Asunto(s)
Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , ADN Protozoario/metabolismo , Genoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , ADN Protozoario/genética , Haplotipos/genética , Histonas/deficiencia , Histonas/genética , Familia de Multigenes/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
15.
Mol Syst Biol ; 18(8): e10961, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35975552

RESUMEN

Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Inmunidad Innata , Interferones , SARS-CoV-2
16.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658347

RESUMEN

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

17.
Circ Res ; 127(9): e232-e249, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32811295

RESUMEN

RATIONALE: After myocardial infarction, neutrophils rapidly and massively infiltrate the heart, where they promote both tissue healing and damage. OBJECTIVE: To characterize the dynamics of circulating and cardiac neutrophil diversity after infarction. METHODS AND RESULTS: We employed single-cell transcriptomics combined with cell surface epitope detection by sequencing to investigate temporal neutrophil diversity in the blood and heart after murine myocardial infarction. At day 1, 3, and 5 after infarction, cardiac Ly6G+ (lymphocyte antigen 6G) neutrophils could be delineated into 6 distinct clusters with specific time-dependent patterning and proportions. At day 1, neutrophils were characterized by a gene expression profile proximal to bone marrow neutrophils (Cd177, Lcn2, Fpr1), and putative activity of transcriptional regulators involved in hypoxic response (Hif1a) and emergency granulopoiesis (Cebpb). At 3 and 5 days, 2 major subsets of Siglecfhi (enriched for eg, Icam1 and Tnf) and Siglecflow (Slpi, Ifitm1) neutrophils were found. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis in blood and heart revealed that while circulating neutrophils undergo a process of aging characterized by loss of surface CD62L and upregulation of Cxcr4, heart infiltrating neutrophils acquired a unique SiglecFhi signature. SiglecFhi neutrophils were absent from the bone marrow and spleen, indicating local acquisition of the SiglecFhi signature. Reducing the influx of blood neutrophils by anti-Ly6G treatment increased proportions of cardiac SiglecFhi neutrophils, suggesting accumulation of locally aged neutrophils. Computational analysis of ligand/receptor interactions revealed putative pathways mediating neutrophil to macrophage communication in the myocardium. Finally, SiglecFhi neutrophils were also found in atherosclerotic vessels, revealing that they arise across distinct contexts of cardiovascular inflammation. CONCLUSIONS: Altogether, our data provide a time-resolved census of neutrophil diversity and gene expression dynamics in the mouse blood and ischemic heart at the single-cell level, and reveal a process of local tissue specification of neutrophils in the ischemic heart characterized by the acquisition of a SiglecFhi signature.


Asunto(s)
Infarto del Miocardio , Infiltración Neutrófila , Neutrófilos/citología , Neutrófilos/fisiología , Animales , Antígenos Ly/inmunología , Enfermedades de la Aorta/patología , Aterosclerosis/patología , Autoanticuerpos/farmacología , Células de la Médula Ósea , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Comunicación Celular , Senescencia Celular , Mapeo Epitopo/métodos , Adhesiones Focales , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoantígenos/metabolismo , Antígenos Comunes de Leucocito , Lipocalina 2/metabolismo , Macrófagos/fisiología , Ratones , Infarto del Miocardio/sangre , Neutrófilos/metabolismo , Especificidad de Órganos , Receptores de Superficie Celular/metabolismo , Receptores de Formil Péptido/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Bazo/citología , Factores de Tiempo
18.
FASEB J ; 34(1): 316-332, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914675

RESUMEN

For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+]i in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+]i in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.


Asunto(s)
Acetilcolina/metabolismo , Comunicación Autocrina , Calcio/metabolismo , Aromatizantes/farmacología , Comunicación Paracrina , Gusto/fisiología , Tráquea/metabolismo , Animales , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/metabolismo , Colina O-Acetiltransferasa/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Muscarínicos/fisiología , Transducción de Señal , Análisis de la Célula Individual , Canales Catiónicos TRPM/fisiología , Gusto/efectos de los fármacos , Tráquea/efectos de los fármacos , Transcriptoma
19.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668876

RESUMEN

Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis uncovered five subpopulations and their individual responses to the treatment. The effects on the B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by the computational analysis and were validated by molecular biological methods. The observed upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52, and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.


Asunto(s)
Adenina/análogos & derivados , Linfoma de Células del Manto/tratamiento farmacológico , Piperidinas/uso terapéutico , RNA-Seq , Análisis de la Célula Individual , Adenina/farmacología , Adenina/uso terapéutico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Linfoma de Células del Manto/genética , Piperidinas/farmacología , Reproducibilidad de los Resultados , Factores de Tiempo
20.
Circ Res ; 122(12): 1661-1674, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29545365

RESUMEN

RATIONALE: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they have been defined by the expression of a restricted number of markers. OBJECTIVE: We have applied single-cell RNA sequencing as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. METHOD AND RESULTS: We performed single-cell RNA sequencing of total aortic CD45+ cells extracted from the nondiseased (chow fed) and atherosclerotic (11 weeks of high-fat diet) aorta of low-density lipoprotein receptor-deficient (Ldlr-/-) mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortas, whereas monocytes, monocyte-derived dendritic cells, and 2 populations of macrophages were almost exclusively detectable in atherosclerotic aortas, comprising inflammatory macrophages showing enrichment in Il1b and previously undescribed TREM2hi (triggered receptor expressed on myeloid cells 2) macrophages showing enrichment in Trem2. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these 3 macrophage subsets and monocyte-derived dendritic cells and uncovered putative functions of each cell type. Notably, TREM2hi macrophages seemed to be endowed with specialized functions in lipid metabolism and catabolism and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe-/- aortas, indicating relevance of our findings in different stages of atherosclerosis and mouse models. CONCLUSIONS: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and monocyte-derived dendritic cells in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.


Asunto(s)
Enfermedades de la Aorta/patología , Aterosclerosis/patología , Macrófagos/clasificación , Monocitos/clasificación , Análisis de Secuencia de ARN/métodos , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Linfocitos B/clasificación , Biomarcadores/análisis , Células Dendríticas/clasificación , Células Dendríticas/patología , Perfilación de la Expresión Génica/métodos , Humanos , Leucocitos/clasificación , Leucocitos/patología , Macrófagos/patología , Masculino , Ratones , Monocitos/patología , Fenotipo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Análisis de la Célula Individual , Linfocitos T/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA