Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(17): 9864-9875, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28813138

RESUMEN

Assessment of water quality evolution in the thousands of existing and future mine pit lakes worldwide requires new numerical tools that integrate geochemical, hydrological, and biological processes. A coupled model was used to test alternative hypothesized controls on water quality in a pit lake over ∼8 years. The evolution of pH, Al, and Fe were closely linked; field observations were reproduced with generic solubility equilibrium controls on Fe(III) and Al and a commonly reported acceleration of the abiotic Fe(II) oxidation rate by 2-3 orders of magnitude. Simulations indicated an ongoing acidity loading at the site, and the depletion of Al mineral buffering capacity after ∼5 years. Simulations also supported the existence of pH limitation on nitrification, and a limitation on phytoplankton growth other than the commonly postulated P and DIC limitations. Furthermore, the model reproduced the general patterns of salinity, pH, Al, and Fe during an uncontrolled river breach in 2011, however, incorporating sediment biogeochemical feedbacks is required to reproduce the observed postbreach internal alkalinity generation in the lake. The modeling approach is applicable to the study of hydrological, geochemical, and biological interactions for a range of lake and reservoir management challenges.


Asunto(s)
Compuestos Férricos , Lagos , Calidad del Agua , Ecología , Hidrobiología , Hidrodinámica
2.
Environ Sci Technol ; 48(20): 12141-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25252140

RESUMEN

The mobility of groundwater and its reactivity with subsurface lithologies makes it an ideal medium for investigating both the mineralogy of the extensive volume of the rocks and soils that it comes into contact with, including the distribution of potential commodities, and the presence of contaminants. Groundwater grab sampling is potentially an effective tool for evaluating metal and metalloid concentrations but can suffer from poor replication and high detection limits. This study evaluates the diffusive gradients in thin films (DGT) technique to detect signatures of Au mineralization in groundwater, as well as associated pathfinder and potential contaminant elements (As and Sb). The DGT technique was modified for Au by evaluating a "gel-less" configuration, with diffusion onto an activated carbon binding layer being controlled by the 0.13 mm thick filter membrane (0.45 µm porosity) only, in order to increase sensitivity in quiescent solutions. Laboratory-based measurements indicated that the diffusive boundary layer (DBL) was ∼ 0.40 mm in thickness in quiescent solutions. The modified DGT samplers were then deployed alongside ferrihydrite DGT devices (fitted with 0.8 mm diffusive gels) to simultaneously measure Au, As and Sb in groundwaters surrounding a known arsenopyrite-hosted Au ore body. DGT-measured Au concentrations ranged from 2.0 ng/L to 38.5 ng/L, and were within a factor of 5 of grab sample concentrations. DGT-measured concentrations of As and Sb were above the detection limits, while grab sample concentrations of As and Sb were often close to or below detection. The DGT technique demonstrated methodological improvement over grab sampling of groundwater for the investigated elements with respect to sensitivity, replication, and portability, although DGT requires further evaluation in a wider range of groundwater environments and conditions.


Asunto(s)
Antimonio/análisis , Arsénico/análisis , Técnicas de Química Analítica , Oro/análisis , Agua Subterránea/análisis , Difusión , Compuestos Férricos , Metales , Suelo , Soluciones
3.
Anal Chem ; 84(16): 6994-7000, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22812590

RESUMEN

Gold is a precious metal that exists in most soils, sediments, and natural waters at extremely low concentrations (<1 µg/kg). The diffusive gradients in thin films (DGT) technique, used extensively for measuring trace metal concentrations in soils, sediments, and waters, has potential for geochemical exploration for gold, but has not been developed for this metal. This work investigates the possibility of measuring labile gold using DGT by introducing a new binding layer based on activated carbon. The performance of this new technique was assessed using gold(III) chloride in solution by: (1) determining the diffusion coefficient of gold(III) in hydrogels; (2) determining the uptake of gold(III) chloride by the new activated carbon binding layer; (3) determining an elution methodology for the binding layer and evaluating its efficiency; (4) assessing the capacity of the activated carbon binding layer to adsorb gold; (5) determining the effect of pH and ionic strength (as NaCl) on performance, and (6) assessing the selectivity of the new binding layer for gold. It was found that the diffusion coefficient of gold(III) increased as solution pH decreased. The diffusion coefficient also increased at high ionic strength (≥0.1 M NaCl). Accounting for these phenomena, the DGT technique behaved predictably under all tested conditions. The technique can potentially be used as a geochemical exploration tool for gold in soils and in aqueous environments, with method detection limits as low as 0.9 ng/L for a 7-day deployment.

4.
Ground Water ; 54(1): 23-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25628017

RESUMEN

A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.


Asunto(s)
Agua Subterránea/química , Porosidad , Movimientos del Agua , Simulación por Computador , Gases/química , Hidrología , Modelos Teóricos , Suelo/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA