Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 37: 441-468, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351785

RESUMEN

Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive to the ultraviolet to red spectrum of light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection.


Asunto(s)
Opsinas , Opsinas de Bastones , Animales , Peces/genética , Mamíferos , Opsinas/genética , Filogenia , Pigmentos Retinianos/genética , Opsinas de Bastones/genética , Vertebrados/genética
2.
Nature ; 589(7840): 76-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208944

RESUMEN

Adaptive radiation is the likely source of much of the ecological and morphological diversity of life1-4. How adaptive radiations proceed and what determines their extent remains unclear in most cases1,4. Here we report the in-depth examination of the spectacular adaptive radiation of cichlid fishes in Lake Tanganyika. On the basis of whole-genome phylogenetic analyses, multivariate morphological measurements of three ecologically relevant trait complexes (body shape, upper oral jaw morphology and lower pharyngeal jaw shape), scoring of pigmentation patterns and approximations of the ecology of nearly all of the approximately 240 cichlid species endemic to Lake Tanganyika, we show that the radiation occurred within the confines of the lake and that morphological diversification proceeded in consecutive trait-specific pulses of rapid morphospace expansion. We provide empirical support for two theoretical predictions of how adaptive radiations proceed, the 'early-burst' scenario1,5 (for body shape) and the stages model1,6,7 (for all traits investigated). Through the analysis of two genomes per species and by taking advantage of the uneven distribution of species in subclades of the radiation, we further show that species richness scales positively with per-individual heterozygosity, but is not correlated with transposable element content, number of gene duplications or genome-wide levels of selection in coding sequences.


Asunto(s)
Evolución Biológica , Cíclidos/clasificación , Cíclidos/genética , Somatotipos/genética , África , Animales , Calibración , Cíclidos/anatomía & histología , Femenino , Especiación Genética , Genómica , Heterocigoto , Maxilares/anatomía & histología , Lagos , Masculino , Fenotipo , Factores de Tiempo
3.
Syst Biol ; 72(1): 134-149, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35880863

RESUMEN

African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate the relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as the sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system. [African cichlids; Blenniiformes; Gene tree heterogeneity; Hybrid assembly; Phylogenetic network; Pseudocrenilabrinae; Species tree.].


Asunto(s)
Cíclidos , Animales , Filogenia , Cíclidos/genética , Evolución Biológica , Exones , Modelos Genéticos
4.
Nat Rev Genet ; 19(11): 705-717, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30111830

RESUMEN

Owing to their taxonomic, phenotypic, ecological and behavioural diversity and propensity for explosive diversification, the assemblages of cichlid fish in the East African Great Lakes Victoria, Malawi and Tanganyika are important role models in evolutionary biology. With the release of five reference genomes and many additional genomic resources, as well as the establishment of functional genomic tools, the cichlid system has fully entered the genomic era. The in-depth genomic exploration of the East African cichlid fauna - in combination with the examination of their ecology, morphology and behaviour - permits novel insights into the way organisms diversify.


Asunto(s)
Cíclidos/genética , Evolución Molecular , Genómica , Filogenia , Animales , Malaui , Tanzanía
5.
Mol Ecol ; 32(22): 5913-5931, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37830773

RESUMEN

Tropical freshwater lakes are well known for their high biodiversity, and particularly the East African Great Lakes are renowned for their adaptive radiation of cichlid fishes. While comparative phylogenetic analyses of extant species flocks have revealed patterns and processes of their diversification, little is known about evolutionary trajectories within lineages, the impacts of environmental drivers, or the scope and nature of now-extinct diversity. Time-structured palaeodata from geologically young fossil records, such as fossil counts and particularly ancient DNA (aDNA) data, would help fill this large knowledge gap. High ambient temperatures can be detrimental to the preservation of DNA, but refined methodology now allows data generation even from very poorly preserved samples. Here, we show for the first time that fish fossils from tropical lake sediments yield endogenous aDNA. Despite generally low endogenous content and high sample dropout, the application of high-throughput sequencing and, in some cases, sequence capture allowed taxonomic assignment and phylogenetic placement of 17% of analysed fish fossils to family or tribe level, including remains which are up to 2700 years old or weigh less than 1 mg. The relationship between aDNA degradation and the thermal age of samples is similar to that described for terrestrial samples from cold environments when adjusted for elevated temperature. Success rates and aDNA preservation differed between the investigated lakes Chala, Kivu and Victoria, possibly caused by differences in bottom water oxygenation. Our study demonstrates that the sediment records of tropical lakes can preserve genetic information on rapidly diversifying fish taxa over time scales of millennia.


Asunto(s)
Cíclidos , Lagos , Animales , Filogenia , Fósiles , ADN Antiguo , Cíclidos/genética
6.
Mol Ecol ; 31(10): 2882-2897, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302684

RESUMEN

The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Evolución Molecular , Peces , Lagos , Filogenia , Rodopsina/genética , Tanzanía , Agua
7.
J Fish Biol ; 101(5): 1333-1342, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36053860

RESUMEN

The small cyprinid genus Prolabeops Schultz, 1941 is restricted to the Nyong and Sanaga River systems in Cameroon. In the past, the genus had been suggested to be either a member of the Labeoninae, Torinae or the Smiliogastrinae mainly on the basis of morphological similarities, and it is nowadays considered as incertae sedis within the Cypriniformes. This study provides the first attempt to reveal the phylogenetic position of Prolabeops using molecular data. For this purpose, the authors sequenced a large fraction of the mitochondrial genome (c. 13,600 bp), including all mitochondrial protein coding genes, of two Prolabeops melanhypopterus specimens and an additional four Enteromius specimens. The large-scale phylogenetic analysis was based on an alignment including all mitochondrial protein coding genes of 902 specimens representing c. 899 cypriniform species. Prolabeops was clearly recovered within the African Smiliogastrinae, forming a weakly supported clade together with Enteromius jae, Enteromius hulstaerti and Barboides gracilis. The study data underline the urgent need of a thorough taxonomic revision of the small African barbs collectively placed in the genus Enteromius.


Asunto(s)
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animales , Filogenia , Cipriniformes/genética , Cyprinidae/anatomía & histología , Proteínas Mitocondriales/genética
8.
Mol Biol Evol ; 37(4): 1100-1113, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31821500

RESUMEN

The adaptive radiation of cichlid fishes in East African Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800,000 years from a common founder population. It has been proposed that hybridization between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria region cichlid superflock. Here, we report that Lake Malawi cichlid genomes also show evidence of hybridization between two lineages that split 3-4 Ma, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. "ruaha blue." The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridization are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridization in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.


Asunto(s)
Adaptación Biológica/genética , Cíclidos/genética , Especiación Genética , Hibridación Genética , Animales , Flujo Génico , Haplotipos , Lagos , Malaui , Polimorfismo Genético
9.
Mol Ecol ; 30(1): 274-296, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107988

RESUMEN

Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Ecotipo , Expresión Génica , Humanos , Inmunidad , Lagos
10.
Proc Biol Sci ; 287(1927): 20200127, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32429812

RESUMEN

Many animals can modify the environments in which they live, thereby changing the selection pressures they experience. A common example of such niche construction is the use, creation or modification of environmental resources for use as nests or shelters. Because these resources often have correlated structural elements, it can be difficult to disentangle the relative contribution of these elements to resource choice, and the preference functions underlying niche-construction behaviour remain hidden. Here, we present an experimental paradigm that uses 3D scanning, modelling and printing to create replicas of structures that differ with respect to key structural attributes. We show that a niche-constructing, shell-dwelling cichlid fish, Neolamprologus multifasciatus, has strong open-ended preference functions for exaggerated shell replicas. Fish preferred shells that were fully intact and either enlarged, lengthened or had widened apertures. Shell intactness was the most important structural attribute, followed by shell length, then aperture width. We disentangle the relative roles of different shell attributes, which are tightly correlated in the wild, but nevertheless differentially influence shelter choice and therefore niche construction in this species. We highlight the broad utility of our approach when compared with more traditional methods (e.g. two-choice tasks) for studying animal decision-making in a range of contexts.


Asunto(s)
Cíclidos/fisiología , Animales , Comportamiento de Nidificación , Filogenia
11.
J Great Lakes Res ; 46(5): 1067-1078, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33100489

RESUMEN

Ancient Lake Tanganyika in East Africa houses the world's ecologically and morphologically most diverse assemblage of cichlid fishes, and the third most species-rich after lakes Malawi and Victoria. Despite long-lasting scientific interest in the cichlid species flocks of the East African Great Lakes, for example in the context of adaptive radiation and explosive diversification, their taxonomy and systematics are only partially explored; and many cichlid species still await their formal description. Here, we provide a current inventory of the cichlid fish fauna of Lake Tanganyika, providing a complete list of all valid 208 Tanganyikan cichlid species, and discuss the taxonomic status of more than 50 undescribed taxa on the basis of the available literature as well as our own observations and collections around the lake. This leads us to conclude that there are at least 241 cichlid species present in Lake Tanganyika, all but two are endemic to the basin. We finally summarize some of the major taxonomic challenges regarding Lake Tanganyika's cichlid fauna. The taxonomic inventory of the cichlid fauna of Lake Tanganyika presented here will facilitate future research on the taxonomy and systematics and the ecology and evolution of the species flock, as well as its conservation.

12.
BMC Evol Biol ; 19(1): 13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630407

RESUMEN

BACKGROUND: The impressive adaptive radiation of notothenioid fishes in Antarctic waters is generally thought to have been facilitated by an evolutionary key innovation, antifreeze glycoproteins, permitting the rapid evolution of more than 120 species subsequent to the Antarctic glaciation. By way of contrast, the second-most species-rich notothenioid genus, Patagonotothen, which is nested within the Antarctic clade of Notothenioidei, is almost exclusively found in the non-Antarctic waters of Patagonia. While the drivers of the diversification of Patagonotothen are currently unknown, they are unlikely to be related to antifreeze glycoproteins, given that water temperatures in Patagonia are well above freezing point. Here we performed a phylogenetic analysis based on genome-wide single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RADseq) in a total of twelve Patagonotothen species. RESULTS: We present a well-supported, time-calibrated phylogenetic hypothesis including closely and distantly related outgroups, confirming the monophyly of the genus Patagonotothen with an origin approximately 3 million years ago and the paraphyly of both the sister genus Lepidonotothen and the family Notothenidae. Our phylogenomic and population genetic analyses highlight a previously unrecognized linage and provide evidence for shared genetic variation between some closely related species. We also provide a mitochondrial phylogeny showing mitonuclear discordance. CONCLUSIONS: Based on a combination of phylogenomic and population genomic approaches, we provide evidence for the existence of a new, potentially cryptic, Patagonotothen species, and demonstrate that genetic boundaries between some closely related species are diffuse, likely due to recent introgression and/or incomplete linage sorting. The detected mitonuclear discordance highlights the limitations of relying on a single locus for species barcoding. In addition, our time-calibrated phylogenetic hypothesis shows that the early burst of diversification roughly coincides with the onset of the intensification of Quaternary glacial cycles and that the rate of species accumulation may have been stepwise rather than constant. Our phylogenetic framework not only advances our understanding of the origin of a high-latitude marine radiation, but also provides the basis for the study of the ecology and life history of the genus Patagonotothen, as well as for their conservation and commercial management.


Asunto(s)
Peces/clasificación , Filogenia , Animales , Regiones Antárticas , Secuencia de Bases , Calibración , Sitios Genéticos , Marcadores Genéticos , Variación Genética , Genoma , Haplotipos/genética , Funciones de Verosimilitud , Mitocondrias/genética , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
13.
BMC Genomics ; 20(1): 39, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642242

RESUMEN

BACKGROUND: Differential gene expression can be translated into differing phenotypic traits. Especially during embryogenesis, specific gene expression networks regulate the development of different body structures. Cichlid fishes, with their impressive phenotypic diversity and propensity to radiate, are an emerging model system in the genomics era. Here we set out to investigate gene expression throughout development in the well-studied cichlid fish Astatotilapia burtoni, native to Lake Tanganyika and its affluent rivers. RESULTS: Combining RNA-sequencing from different developmental time points as well as integrating adult gene expression data, we constructed a new genome annotation for A. burtoni comprising 103,253 transcripts (stemming from 52,584 genomic loci) as well as a new reference transcriptome set. We compared our transcriptome to the available reference genome, redefining transcripts and adding new annotations. We show that about half of these transcripts have coding potential. We also characterize transcripts that are not present in the genome assembly. Next, using our newly constructed comprehensive reference transcriptome, we characterized differential gene expression through time and showed that gene expression is shifted between different body parts. We constructed a gene expression network that identified connected genes responsible for particular phenotypes and made use of it to focus on genes under potential positive selection in A. burtoni, which were implicated in fin development and vision. CONCLUSIONS: We provide new genomic resources for the cichlid fish Astatotilapia burtoni, which will contribute to its further establishment as a model system. Tracing gene expression through time, we identified gene networks underlying particular functions, which will help to understand the genetic basis of phenotypic diversity in cichlids.


Asunto(s)
Cíclidos/embriología , Cíclidos/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Animales , Evolución Molecular , Redes Reguladoras de Genes , Fenotipo , Filogenia , Análisis de Secuencia de ARN/métodos
14.
Mol Biol Evol ; 35(3): 593-606, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216381

RESUMEN

New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.

15.
Proc Biol Sci ; 286(1909): 20191050, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31431167

RESUMEN

Although sexual dimorphism is widespread in nature, its evolutionary causes often remain elusive. Here we report a case where a sex-specific conflicting functional demand related to parental care, but not to sexual selection, explains sexual dimorphism in a primarily trophic structure, the gill rakers of cichlid fishes. More specifically, we examined gill raker length in a representative set of cichlid fish species from Lake Tanganyika featuring three different parental care strategies: (i) uni-parental mouthbrooding, whereby only one parental sex incubates the eggs in the buccal cavity; (ii) bi-parental mouthbrooding, whereby both parents participate in mouthbrooding; and (iii) nest guarding without any mouthbrooding involved. As predicted from these different parental care strategies, we find sexual dimorphism in gill raker length to be present only in uni-parental mouthbrooders, but not in bi-parental mouthbrooders nor in nest guarders. Moreover, variation in the extent of sexual dimorphism among uni-parental mouthbrooders appears to be related to trophic ecology. Overall, we present a previously unrecognized scenario for the evolution of sexual dimorphism that is not related to sexual selection or initial niche divergence between sexes. Instead, sexual dimorphism in gill raker length in uni-parental mouthbrooding cichlid fish appears to be the consequence of a sex-specific functional trade-off between a trophic function present in both sexes and a reproductive function present only in the brooding sex.


Asunto(s)
Aclimatación/fisiología , Cíclidos/fisiología , Caracteres Sexuales , Adaptación Fisiológica , Animales , Femenino , Masculino , Filogenia , Tanzanía
16.
Mol Ecol ; 28(23): 5010-5031, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31472098

RESUMEN

In deep-water animals, the visual sensory system is often challenged by the dim-light environment. Here, we focus on the molecular mechanisms involved in rapid deep-water adaptations. We examined visual system evolution in a small-scale yet phenotypically and ecologically diverse adaptive radiation, the species flock of cichlid fishes in deep crater lake Barombi Mbo in Cameroon, West Africa. We show that rapid adaptations of the visual system to the novel deep-water habitat primarily occurred at the level of gene expression changes rather than through nucleotide mutations, which is compatible with the young age of the radiation. Based on retinal bulk RNA sequencing of all eleven species, we found that the opsin gene expression pattern was substantially different for the deep-water species. The nine shallow-water species feature an opsin palette dominated by the red-sensitive (LWS) opsin, whereas the two unrelated deep-water species lack expression of LWS and the violet-sensitive (SWS2B) opsin, thereby shifting the cone sensitivity to the centre of the light spectrum. Deep-water species further predominantly express the green-sensitive RH2Aα over RH2Aß. We identified one amino acid substitution in the RH2Aα opsin specific to the deep-water species. We finally performed a comparative gene expression analysis in retinal tissue of deep- vs. shallow-water species. We thus identified 46 differentially expressed genes, many of which are associated with functions in vision, hypoxia management or circadian clock regulation, with some of them being associated with human eye diseases.


Asunto(s)
Cíclidos/genética , Opsinas de los Conos/genética , Evolución Molecular , Visión Ocular/genética , Animales , Camerún , Cíclidos/fisiología , Ecosistema , Regulación de la Expresión Génica/genética , Lagos , Luz , Filogenia , Retina/metabolismo , Retina/fisiología , Análisis de Secuencia de ARN , Especificidad de la Especie , Visión Ocular/fisiología
17.
Syst Biol ; 67(4): 681-699, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385552

RESUMEN

The closure of the Isthmus of Panama has long been considered to be one of the best defined biogeographic calibration points for molecular divergence-time estimation. However, geological and biological evidence has recently cast doubt on the presumed timing of the initial isthmus closure around 3 Ma but has instead suggested the existence of temporary land bridges as early as the Middle or Late Miocene. The biological evidence supporting these earlier land bridges was based either on only few molecular markers or on concatenation of genome-wide sequence data, an approach that is known to result in potentially misleading branch lengths and divergence times, which could compromise the reliability of this evidence. To allow divergence-time estimation with genomic data using the more appropriate multispecies coalescent (MSC) model, we here develop a new method combining the single-nucleotide polymorphism-based Bayesian species-tree inference of the software SNAPP with a molecular clock model that can be calibrated with fossil or biogeographic constraints. We validate our approach with simulations and use our method to reanalyze genomic data of Neotropical army ants (Dorylinae) that previously supported divergence times of Central and South American populations before the isthmus closure around 3 Ma. Our reanalysis with the MSC model shifts all of these divergence times to ages younger than 3 Ma, suggesting that the older estimates supporting the earlier existence of temporary land bridges were artifacts resulting at least partially from the use of concatenation. We then apply our method to a new restriction-site associated DNA-sequencing data set of Neotropical sea catfishes (Ariidae) and calibrate their species tree with extensive information from the fossil record. We identify a series of divergences between groups of Caribbean and Pacific sea catfishes around 10 Ma, indicating that processes related to the emergence of the isthmus led to vicariant speciation already in the Late Miocene, millions of years before the final isthmus closure.


Asunto(s)
Hormigas/clasificación , Bagres/clasificación , Evolución Molecular , Polimorfismo de Nucleótido Simple , Animales , Hormigas/genética , Teorema de Bayes , Región del Caribe , Bagres/genética , Océano Pacífico , Panamá
18.
BMC Evol Biol ; 18(1): 38, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587647

RESUMEN

BACKGROUND: Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. RESULTS: We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. CONCLUSIONS: Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.


Asunto(s)
Bagres/anatomía & histología , Ecosistema , Clima Tropical , Animales , Bagres/clasificación , Agua Dulce , Geografía , Filogenia , Cráneo/anatomía & histología
19.
Trends Genet ; 31(9): 491-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26259669

RESUMEN

Adaptive radiation is the rapid and extensive ecological diversification of an organismal lineage to generate both phenotypic disparity (divergence) and similarity (convergence). Demonstrating particularly clear evidence of the power of natural selection, adaptive radiations serve as outstanding systems for studying the mechanisms of evolution. We review how the first wave of genomic investigation across major archetypal adaptive radiations has started to shed light on the molecular basis of adaptive diversification. Notably, these efforts have not yet identified consistent features of genomic architecture that promote diversification. However, access to a pool of ancient adaptive variation via genetic exchange emerges as an important driver of adaptive radiation. We conclude by highlighting avenues for future research on adaptive radiations, including the discovery of 'adaptation genes' based on genome scans using replicate convergent populations.


Asunto(s)
Adaptación Biológica/genética , Ambiente , Evolución Molecular , Especiación Genética , Genoma/fisiología , Animales , Genómica , Filogenia
20.
Syst Biol ; 66(4): 531-550, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539485

RESUMEN

Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation. In this study, we present a novel approach for species-tree estimation in rapidly diversifying lineages, where introgression is known to occur, and apply it to a multimarker data set containing up to 16 specimens per species for a set of 45 species of East African cichlid fishes (522 individuals in total), with a main focus on the cichlid species flock of Lake Tanganyika. We first identified, using age distributions of most recent common ancestors in individual gene trees, those lineages in our data set that show strong signatures of past introgression. This led us to formulate three hypotheses of introgression between different lineages of Tanganyika cichlids: the ancestor of Boulengerochromini (or of Boulengerochromini and Bathybatini) received genomic material from the derived H-lineage; the common ancestor of Cyprichromini and Perissodini experienced, in turn, introgression from Boulengerochromini and/or Bathybatini; and the Lake Tanganyika Haplochromini and closely related riverine lineages received genetic material from Cyphotilapiini. We then applied the multispecies coalescent model to estimate the species tree of Lake Tanganyika cichlids, but excluded the lineages involved in these introgression events, as the multispecies coalescent model does not incorporate introgression. This resulted in a robust species tree, in which the Lamprologini were placed as sister lineage to the H-lineage (including the Eretmodini), and we identify a series of rapid splitting events at the base of the H-lineage. Divergence ages estimated with the multispecies coalescent model were substantially younger than age estimates based on concatenation, and agree with the geological history of the Great Lakes of East Africa. Finally, we formally tested the three hypotheses of introgression using a likelihood framework, and find strong support for introgression between some of the cichlid tribes of Lake Tanganyika.


Asunto(s)
Cíclidos/clasificación , Filogenia , Animales , Lagos , Modelos Estadísticos , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA