Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 187: 106611, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526079

RESUMEN

Brain inflammation and apoptosis contribute to neuronal damage and loss following ischaemic stroke, leading to cognitive and functional disability. It is well-documented that the human gene-2 (H2)-relaxin hormone exhibits pleiotropic properties via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), including anti-inflammatory and anti-apoptotic effects, thus making it a potential therapeutic for stroke. Hence, the current study investigated whether post-stroke H2-relaxin administration could improve functional and histological outcomes. 8-12-week-old male C57BL/6 mice were subjected to sham operation or photothrombotic stroke and intravenously-administered with either saline (vehicle) or 0.02, 0.2 or 2 mg/kg doses of recombinant H2-relaxin at 6, 24 and 48 h post-stroke. Motor function was assessed using the hanging wire and cylinder test pre-surgery, and at 24 and 72 h post-stroke. Brains were removed after 72 h and infarct volume was assessed via thionin staining, and RXFP1 expression, leukocyte infiltration and apoptosis were determined by immunofluorescence. RXFP1 was identified on neurons, astrocytes and macrophages, and increased post-stroke. Whilst H2-relaxin did not alter infarct volume, it did cause a dose-dependent improvement in motor function at 24 and 72 h post-stroke. Moreover, 2 mg/kg H2-relaxin significantly decreased the number of apoptotic cells as well as macrophages and neutrophils within the ischaemic hemisphere, but did not alter T or B cells numbers. The anti-inflammatory and anti-apoptotic effects of H2-relaxin when administered at 6 h post-cerebral ischaemia may provide a novel therapeutic option for patients following ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Relaxina , Accidente Cerebrovascular , Ratones , Animales , Humanos , Masculino , Relaxina/farmacología , Relaxina/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Ratones Endogámicos C57BL , Accidente Cerebrovascular/tratamiento farmacológico , Encéfalo/metabolismo , Apoptosis , Infarto , Antiinflamatorios
2.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319916

RESUMEN

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Asunto(s)
Antioxidantes , Hipersensibilidad , Ratones , Humanos , Animales , Leucocitos Mononucleares , Ovalbúmina , Epigénesis Genética , Antiinflamatorios
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047588

RESUMEN

Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin's receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges. Our laboratory has recently developed B7-33 peptide, a single-chain agonist based on the B-chain of H2 relaxin. However, the peptide B7-33 has a short circulation time in vitro in serum (t1/2 = ~6 min). In this study, we report structure-activity relationship studies on B7-33 utilizing different fatty-acid conjugations at different positions. We have shown that by fatty-acid conjugation with an appropriate spacer length, the in vitro half-life of B7-33 can be increased from 6 min to 60 min. In the future, the lead lipidated molecule will be studied in animal models to measure its PK/PD properties, which will lead to their pre-clinical applications.


Asunto(s)
Relaxina , Animales , Humanos , Relaxina/farmacología , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad , Fibrosis
4.
Kidney Int ; 102(4): 691-694, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150760

RESUMEN

Kidney fibrosis is a hallmark of chronic kidney disease yet is poorly treated. Chang et al. determined that plasma and kidney levels of the vascular growth factor, angiopoietin-2, were elevated in patients with chronic kidney disease and mice with kidney disease. Angiopoietin-2 inhibited the renoprotective effects of angiopoietin-1 and promoted CC chemokine ligand 2-mediated kidney damage, endothelial cell apoptosis, vascular rarefaction, inflammation, fibrosis, and kidney dysfunction. Hence, therapeutically inhibiting angiopoietin-2 may represent a novel means of treating these chronic kidney disease-associated pathologies.


Asunto(s)
Angiopoyetina 2 , Insuficiencia Renal Crónica , Angiopoyetina 1 , Angiopoyetina 2/metabolismo , Animales , Quimiocinas CC/metabolismo , Fibrosis , Riñón/patología , Ligandos , Ratones , Insuficiencia Renal Crónica/patología
5.
FASEB J ; 35(5): e21595, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908676

RESUMEN

Current histological measurement techniques for interstitial collagen, the basis of interstitial fibrosis, are semi-quantitative at best and only provide a ratio of collagen levels within tissues. The Genesis200 imaging system and supplemental image analysis software, FibroIndex from HistoIndex, is a novel, automated platform that uses second-harmonic generation (SHG) for imaging and characterization of interstitial collagen deposition and additional characteristics, in the absence of any staining. However, its ability to quantify renal fibrosis requires investigation. This study compared SHG imaging of renal fibrosis in mice with unilateral ureteric obstruction (UUO), to that of Masson's trichrome staining (MTS) and immunohistochemistry (IHC) of collagen I. Additionally, the platform generated data on collagen morphology and distribution patterns. While all three methods determined that UUO-injured mice underwent significantly increased renal fibrosis after 7 days, the HistoIndex platform additionally determined that UUO-injured mice had a significantly increased collagen-to-tissue cross reticulation ratio (all P < .001 vs sham group). Furthermore, in UUO-injured mice treated with the relaxin family peptide receptor-1 agonists, relaxin (0.5 mg/kg/day) or B7-33 (0.25 mg/kg/day), or angiotensin converting enzyme-inhibitor, perindopril (1 mg/kg/day) over the 7-day period, only the HistoIndex platform determined that the drug-induced prevention of renal fibrosis correlated with significantly reduced collagen fiber thickness and collagen-to-tissue cross reticulation ratio, but increased collagen fiber counts. Relaxin or B7-33 treatment also increased renal matrix metalloproteinase-2 and reduced tissue inhibitor of metalloproteinase-1 levels (all P < .01 vs UUO alone). This study demonstrated the diagnostic value of the HistoIndex platform over currently used staining techniques.


Asunto(s)
Fibrosis/patología , Enfermedades Renales/patología , Fragmentos de Péptidos/farmacología , Relaxina/farmacología , Obstrucción Ureteral/complicaciones , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Fibrosis/tratamiento farmacológico , Fibrosis/etiología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682717

RESUMEN

Chronic kidney disease (CKD) affects 1 in 10 members of the general population, placing these patients at an increasingly high risk of kidney failure. Despite the significant burden of CKD on various healthcare systems, there are no effective cures that reverse or even halt its progression. In recent years, human bone-marrow-derived mesenchymal stromal cells (BM-MSCs) have been recognised as a novel therapy for CKDs, owing to their well-established immunomodulatory and tissue-reparative properties in preclinical settings, and their promising safety profile that has been demonstrated in patients with CKDs from several clinical trials. However, renal fibrosis (scarring), a hallmark of CKD, has been shown to impair the viability and functionality of BM-MSCs post-transplantation. This has suggested that BM-MSCs might require a pre-treatment or adjunct therapy that can enhance the viability and therapeutic efficacy of these stromal cells in chronic disease settings. To address this, recent studies that have combined BM-MSCs with the anti-fibrotic drug serelaxin (RLX), have demonstrated the enhanced therapeutic potential of this combination therapy in normotensive and hypertensive preclinical models of CKD. In this review, a critical appraisal of the preclinical data available on the anti-fibrotic and renoprotective actions of BM-MSCs or RLX alone and when combined, as a treatment option for normotensive vs. hypertensive CKD, is discussed.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Antifibróticos , Fibrosis , Humanos , Insuficiencia Renal Crónica/tratamiento farmacológico
7.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806076

RESUMEN

Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1ß and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1ß, IL-18 and transforming growth factor (TGF)-ß1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-ß1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1ß and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.


Asunto(s)
Inflamasomas , Relaxina , Adenosina Trifosfato/metabolismo , Angiotensina II/metabolismo , Animales , Caspasa 1/metabolismo , Fibrosis , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Miofibroblastos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Relaxina/metabolismo , Relaxina/farmacología , Receptor Toll-Like 4/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430518

RESUMEN

A high salt (HS) diet is associated with an increased risk for cardiovascular diseases (CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many CVDs. However, there are limited AT2R-selective agonists available. Our first reported ß-substituted angiotensin III peptide, ß-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and renal fibrosis and inflammation, which were associated with increased TGF-ß1 levels in heart, kidney and plasma. Four weeks' treatment (from weeks 5-8) with ß-Pro7-AngIII inhibited the HS-induced cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced local and systemic TGF-ß1 as well as reduced cardiac myofibroblast differentiation. Importantly, the anti-fibrotic and anti-inflammatory effects caused by ß-Pro7-AngIII were attenuated by the AT2R antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective roles of the AT2R-selective ß-Pro7-AngIII, highlighting it as an important therapeutic that can target the AT2R to treat end-organ damage.


Asunto(s)
Enfermedades Renales , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Factor de Crecimiento Transformador beta1/efectos adversos , Fibrosis , Enfermedades Renales/etiología , Enfermedades Renales/inducido químicamente , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio/efectos adversos , Inflamación , Antiinflamatorios/efectos adversos
9.
FASEB J ; 34(6): 8217-8233, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297670

RESUMEN

Fibrosis is a hallmark of several cardiovascular diseases. The relaxin family peptide receptor 1 (RXFP1) agonist, relaxin, has rapidly occurring anti-fibrotic actions which are mediated through RXFP1 and angiotensin II receptor crosstalk on renal and cardiac myofibroblasts. Here, we investigated whether this would allow relaxin to indirectly activate angiotensin II type 2 receptor (AT2 R)-specific signal transduction in primary human cardiac myofibroblasts (HCMFs). The anti-fibrotic effects of recombinant human relaxin (RLX; 16.8 nM) or the AT2 R-agonist, Compound 21 (C21; 1 µM), were evaluated in TGF-ß1-stimulated HCMFs, in the absence or presence of an RXFP1 antagonist (1 µM) or AT2 R antagonist (0.1 µM) to confirm RXFP1-AT2 R crosstalk. Competition binding for RXFP1 was determined. Western blotting was performed to determine which AT2 R-specific protein phosphatases were expressed by HCMFs; then, the anti-fibrotic effects of RLX and/or C21 were evaluated in the absence or presence of pharmacological inhibition (NSC95397 (1 µM) for MKP-1; okadaic acid (10 nM) for PP2A) or siRNA-knockdown of these phosphatases after 72 hours. The RLX- or C21-induced increase in ERK1/2 and nNOS phosphorylation, and decrease in α-SMA (myofibroblast differentiation) and collagen-I expression by HCMFs was abrogated by pharmacological blockade of RXFP1 or the AT2 R, confirming RXFP1-AT2 R crosstalk in these cells. HCMFs were found to express AT2 R-dependent MKP-1 and PP2A phosphatases, while pharmacological blockade or siRNA-knockdown of either phosphatase also abolished RLX and/or C21 signal transduction in HCMFs (all P < .05 vs RLX or C21 alone). These findings demonstrated that RLX can indirectly activate AT2 R-dependent phosphatase activity in HCMFs by signaling through RXFP1-AT2 R crosstalk, which have important therapeutic implications for its anti-fibrotic actions.


Asunto(s)
Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Corazón/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
10.
FASEB J ; 33(12): 14717-14733, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689135

RESUMEN

The recombinant form of the peptide hormone relaxin, serelaxin (RLX), mediates its anti-fibrotic actions by impeding the profibrotic activity of cytokines including TGF-ß1 and IL-1ß. As IL-1ß can be produced by the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domains-containing protein 3 (NLRP3) inflammasome, this study determined whether RLX targeted the inflammasome to inhibit the profibrotic TGF-ß1/IL-1ß axis in primary human cardiac myofibroblasts (HCMFs) in vitro and in mice with isoproterenol (ISO)-induced cardiomyopathy in vivo. HCMFs stimulated with TGF-ß1 (5 ng/ml), LPS (100 ng/ml), and ATP (5 mM) (T+L+A) for 8 h, to induce the NLRP3 inflammasome, demonstrated significantly increased protein expression of markers of NLRP3 priming (NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase-recruitment domain, procaspase-1) and activity (IL-1ß, IL-18). After 72 h, there was significantly increased neuronal NOS (nNOS), TLR-4, procaspase-1, myofibroblast differentiation, and collagen-I deposition. These measures, along with interstitial TGF-ß1 expression and collagen deposition, were also increased in the left ventricle (LV) of ISO-injured mice 14 d postinjury. RLX [16.8 nM (100 ng/ml) in vitro; 0.5 mg/kg per day in vivo] inhibited T+L+A- and ISO-induced TLR-4 expression, NLRP3 priming, IL-1ß, IL-18, myofibroblast differentiation, and interstitial collagen deposition at the time points studied, via the promotion of nNOS; with the NLRP3- and IL-1ß-inhibitory effects of RLX in HCMFs being abrogated by pharmacological blockade of nNOS or TLR-4. Comparatively, the small molecule NLRP3 inhibitor, N-{[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl}-4-(1-hydroxy-1-methylethyl)-2-furansulfonamide (1 µM in vitro, 10 mg/kg/d in vivo), inhibited components of the NLRP3 inflammasome in vitro and in vivo and ISO-induced interstitial LV fibrosis in vivo but did not affect nNOS, TLR-4, myofibroblast differentiation, or myofibroblast-induced collagen deposition. Hence, RLX can inhibit the TGF-ß1/IL-1ß axis via a nNOS-TLR-4-NLRP3 inflammasome-dependent mechanism on cardiac myofibroblasts.-Cáceres, F. T., Gaspari, T. A., Samuel, C. S., Pinar, A. A. Serelaxin inhibits the profibrotic TGF-ß1/IL-1ß axis by targeting TLR-4 and the NLRP3 inflammasome in cardiac myofibroblasts.


Asunto(s)
Miocardio/metabolismo , Miofibroblastos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Relaxina/farmacología , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Fibrosis , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Miocardio/citología , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Proteínas Recombinantes/farmacología
11.
FASEB J ; 33(5): 6402-6411, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768365

RESUMEN

The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-ß1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.


Asunto(s)
Asma , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Asma/inmunología , Asma/patología , Asma/prevención & control , Dexametasona/farmacología , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos BALB C
12.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511361

RESUMEN

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Asunto(s)
Riñón/patología , Miocardio/patología , Miofibroblastos/fisiología , Receptor de Angiotensina Tipo 1/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Péptidos/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Células Cultivadas , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Proteínas Recombinantes , Relaxina/fisiología , Tetrazoles/uso terapéutico
13.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093005

RESUMEN

Preeclampsia (PE) is a pregnancy-specific multisystem disorder and is associated with maladaptation of the maternal cardiovascular system and abnormal placentation. One of the important characteristics in the pathophysiology of PE is a dysfunction of the placenta. Placental insufficiency is associated with poor trophoblast uterine invasion and impaired transformation of the uterine spiral arterioles to high capacity and low impedance vessels and/or abnormalities in the development of chorionic villi. Significant progress in identifying potential molecular targets in the pathophysiology of PE is underway. The human placenta is immunologically functional with the trophoblast able to generate specific and diverse innate immune-like responses through their expression of multimeric self-assembling protein complexes, termed inflammasomes. However, the type of response is highly dependent upon the stimuli, the receptor(s) expressed and activated, the downstream signaling pathways involved, and the timing of gestation. Recent findings highlight that inflammasomes can act as a molecular link for several components at the syncytiotrophoblast surface and also in maternal blood thereby directly influencing each other. Thus, the inflammasome molecular platform can promote adverse inflammatory effects when chronically activated. This review highlights current knowledge in placental inflammasome expression and activity in PE-affected pregnancies, and consequently, vascular dysfunction in PE that must be addressed as an interdependent interactive process.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/inmunología , Placenta/metabolismo , Preeclampsia/inmunología , Preeclampsia/metabolismo , Trofoblastos/metabolismo , Femenino , Humanos , Hipertensión/inmunología , Hipertensión/metabolismo , Inflamasomas/genética , Inflamación/metabolismo , Isquemia/inmunología , Isquemia/metabolismo , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Placenta/patología , Preeclampsia/tratamiento farmacológico , Embarazo , Transducción de Señal/genética , Transducción de Señal/inmunología
14.
Am J Physiol Renal Physiol ; 317(3): F606-F615, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268352

RESUMEN

Posttranslational modification of nucleosomal histones is a major determinant of chromatin structure and gene activity. In the present study, we hypothesized that unilateral ureteric obstruction (UUO), a widely used model of tubulointerstitial injury, would be associated with a distinct pattern of histone modifications (marks) in the kidney. Mass spectrometry was used to profile 63 different histone marks in normal mouse kidneys and those after 10 days of UUO. A subsequent histochemical analysis further examined examples of specific marks that changed significantly after UUO for which antisera are available. Histone marks were much more widely distributed and abundant in the normal kidney than is usually appreciated. Although aggregate analysis of the mass spectrometry results revealed net differences between control and UUO groups, residue-specific variations were subtle. Of the 16/63 significant changes (P < 0.05), only 8 changes were quantitatively different by >5%. Nevertheless, we identified several that are not usually examined in the kidney, including marks in the globular domain of core histones (H3:K79), linker histones (H1.4), and histone variants (H3.1:K27 and H3.3:K27). In several cases, there were complementary changes in different marks on the same amino acid. Using H3:K79ME2 as an example, mark enrichment was heterogeneous but largely colocalized with active transcription in a subset of tubular pathology. In conclusion, our study highlights the importance of unbiased screening in examining histone marks. Simultaneous changes in multiple marks on the same amino acid indicate a coordinated histone mark signature. The heterogeneous enrichment of marks, even within the same tubule, highlights the importance of regulatory context.


Asunto(s)
Histonas/metabolismo , Enfermedades Renales/etiología , Riñón/metabolismo , Procesamiento Proteico-Postraduccional , Obstrucción Ureteral/complicaciones , Acetilación , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Espectrometría de Masas , Metilación , Ratones Endogámicos C57BL , Proteómica/métodos , Transcripción Genética , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
15.
Exp Lung Res ; 45(9-10): 310-322, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31762329

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease with unknown cause. While the drugs nintedanib and pirfenidone have been approved for the treatment of IPF, they only slow disease progression and can induce several side-effects, suggesting that there is still an unmet need to develop new efficacious drugs, and interventions strategies, to combat this disease. We have recently developed a sheep model of pulmonary fibrosis for the preclinical testing of novel anti-fibrotic drugs. The aim of this study was to assess the effects of pirfenidone to ascertain its suitability as a benchmark for comparing other novel therapeutics in this sheep model. To initiate localized fibrosis, sheep were given two infusions of bleomycin (0.6 U/ml per infusion), a fortnight apart, to a specific lung segment. The contralateral lung segment in each sheep was infused with saline to act as an internal control. Two weeks after the final bleomycin infusion, either pirfenidone or methylcellulose (vehicle control) were administered orally to sheep twice daily for 5 weeks. Results showed that sheep treated with pirfenidone had improved lung function, ameliorated fibrotic pathology, lower numbers of active myofibroblasts, and reduced extra cellular matrix deposition when compared with the relevant measurements obtained from control sheep treated with vehicle. This study showed that pirfenidone can attenuate bleomycin-induced pulmonary fibrosis in sheep, and can therefore be used as a positive control to assess other novel therapeutics for IPF in this model.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/efectos de los fármacos , Piridonas/farmacología , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Femenino , Indoles/farmacología , Miofibroblastos/efectos de los fármacos , Ovinos
16.
Respir Res ; 19(1): 114, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884181

RESUMEN

BACKGROUND: Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia. METHOD: Newborn mice were exposed to 90% O2 (hyperoxia) or 21% O2 (normoxia) from postnatal days 0-4. A sub-group of hyperoxia mice were injected intratracheally with 2.5X105 hMSCs. Using flow cytometry we assessed pulmonary immune cells at postnatal days 0, 4, 7 and 14. The following markers were chosen to identify these cells: CD45+ (leukocytes), Ly6C+Ly6G+ (granulocytes), CD11b+CD11c+ (macrophages); macrophage polarisation was assessed by F4/80 and CD206 expression. hMSCs expressing enhanced green fluorescent protein (eGFP) and firefly luciferase (fluc) were administered via the trachea at day 4. Lung macrophages in all groups were profiled using next generation sequencing (NGS) to assess alterations in macrophage phenotype. Pulmonary collagen deposition and morphometry were assessed at days 14 and 56 respectively. RESULTS: At day 4, hyperoxia increased the number of pulmonary Ly6C+Ly6G+ granulocytes and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. At days 7 and 14, hyperoxia increased numbers of CD45+ leukocytes, CD11b+CD11c+ alveolar macrophages and F4/80lowCD206low macrophages but decreased F4/80highCD206high macrophages. hMSCs administration ameliorated these effects of hyperoxia, notably reducing numbers of CD11b+CD11c+ and F4/80lowCD206low macrophages; in contrast, F4/80highCD206high macrophages were increased. Genes characteristic of anti-inflammatory 'M2' macrophages (Arg1, Stat6, Retnla, Mrc1, Il27ra, Chil3, and Il12b) were up-regulated, and pro-inflammatory 'M1' macrophages (Cd86, Stat1, Socs3, Slamf1, Tnf, Fcgr1, Il12b, Il6, Il1b, and Il27ra) were downregulated in isolated lung macrophages from hyperoxia-exposed mice administered hMSCs, compared to mice without hMSCs. Hydroxyproline assay at day 14 showed that the 2-fold increase in lung collagen following hyperoxia was reduced to control levels in mice administered hMSCs. By day 56 (early adulthood), hMSC administration had attenuated structural changes in hyperoxia-exposed lungs. CONCLUSIONS: Our findings suggest that hMSCs reduce neonatal lung injury caused by hyperoxia by modulation of macrophage phenotype. Not only did our cell-based therapy using hMSC induce structural repair, it limited the progression of pulmonary fibrosis.


Asunto(s)
Hiperoxia/metabolismo , Hiperoxia/terapia , Lesión Pulmonar/metabolismo , Lesión Pulmonar/terapia , Macrófagos Alveolares/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Mieloides/metabolismo , Animales , Animales Recién Nacidos , Femenino , Hiperoxia/patología , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Macrófagos Alveolares/patología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/patología , Embarazo , Resultado del Tratamiento
17.
FASEB J ; 31(9): 4168-4178, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28626025

RESUMEN

Structural changes known as airway remodeling (AWR) characterize chronic/severe asthma and contribute to lung dysfunction. Thus, we assessed the in vivo efficacy of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) on AWR in a murine model of chronic allergic airways disease (AAD)/asthma. Female Balb/c mice were subjected to a 9-wk model of ovalbumin (Ova)-induced chronic AAD and treated intravenously or intranasally with MCA-MSCs from weeks 9 to 11. Changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were assessed. Ova-injured mice presented with AI, goblet cell metaplasia, epithelial thickening, increased airway TGF-ß1 levels, subepithelial myofibroblast and collagen accumulation, total lung collagen concentration, and AHR (all P < 0.001 vs. uninjured control group). Apart from epithelial thickness, all other parameters measured were significantly, although not totally, decreased by intravenous delivery of MCA-MSCs to Ova-injured mice. In comparison, intranasal delivery of MCA-MSCs to Ova-injured mice significantly decreased all parameters measured (all P < 0.05 vs. Ova group) and, most notably, normalized aberrant airway TGF-ß1 levels, airway/lung fibrosis, and AHR to values measured in uninjured animals. MCA-MSCs also increased collagen-degrading gelatinase levels. Hence, direct delivery of MCA-MSCs offers great therapeutic benefit for the AWR and AHR associated with chronic AAD.-Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., Samuel, C. S. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease.


Asunto(s)
Hipersensibilidad , Células Madre Mesenquimatosas , Fibrosis Pulmonar/terapia , Hipersensibilidad Respiratoria/terapia , Trasplante de Células Madre/métodos , Administración Intranasal , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Femenino , Células Caliciformes , Metaplasia , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/inmunología
18.
Am J Respir Cell Mol Biol ; 56(4): 539-550, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28060543

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease of increasing prevalence marked by poor prognosis and limited treatment options. Ca2+-activated KCa3.1 potassium channels have been shown to play a key role in the aberrant activation and responses to injury in both epithelial cells and fibroblasts, both considered key drivers in the fibrotic process of IPF. Pharmacological inhibition of IPF-derived fibroblasts is able to somewhat prevent TGF-ß- and basic fibroblast growth factor-dependent profibrotic responses. In the current study, we investigated whether blockade of the KCa3.1 ion channel in vivo with a selective inhibitor, Senicapoc, was able to attenuate both histological and physiological outcomes of early fibrosis in our large animal (sheep) model for pulmonary fibrosis. We also determined whether treatment was targeting the profibrotic activity of sheep lung fibroblasts. Senicapoc was administered in established fibrosis, at 2 weeks after bleomycin instillation, and drug efficacy was assessed 4 weeks after treatment. Treatment with Senicapoc improved pre-established bleomycin-induced changes compared with vehicle control, leading to improved lung compliance, reduced extracellular matrix and collagen deposition, and a reduction in both α-smooth muscle actin expression and proliferating cells, both in vivo and in vitro. These studies show that inhibiting the KCa3.1 ion channel is able to attenuate the early fibrogenic phase of bleomycin-dependent fibrosis and inhibits profibrotic behavior of primary sheep lung fibroblasts. This supports the previous research conducted in human IPF-derived fibroblasts and suggests that inhibiting KCa3.1 signaling may provide a novel therapeutic approach for IPF.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Fibrosis Pulmonar/metabolismo , Acetamidas/farmacología , Animales , Bleomicina , Adaptabilidad , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Pruebas de Función Respiratoria , Ovinos , Compuestos de Tritilo/farmacología
19.
Clin Sci (Lond) ; 131(23): 2795-2805, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101299

RESUMEN

Relaxin is increasingly being recognized as a potent vasodilatory and antifibrotic hormone. Given that relaxin is present in the circulation during the luteal phase of the menstrual cycle and during pregnancy, when arterial pressure is lowest in women, relaxin may contribute to the relative cardiovascular protection observed in premenopausal women as compared with age-matched men and postmenopausal women. In the present study, we investigated the contribution of relaxin to the normal regulation of arterial pressure in adult female and male mice and during pregnancy. Mean arterial pressure (MAP) was measured via radiotelemetry in 14-week-old male and female wild-type (WT; C67BL/6xSv129) and relaxin knockout (KO) mice. Thereafter, female mice were time-mated with a (non-telemetered) male of the same genotype and MAP was measured throughout gestation. Basal MAP was ∼10 mmHg lower in WT females than males (P<0.05). Relaxin deficiency increased basal MAP in females (P<0.05 vs WT female), but not males. As expected, MAP decreased during gestation in WT mice. Conversely, in relaxin KO mice, arterial pressure increased during mid and late gestation (P<0.05 as compared with WT). Moreover, relaxin deficiency impaired gestational weight gain and reduced litter size. This is the first study to (i) demonstrate that relaxin contributes to the sexual dimorphism of arterial pressure in mice and (ii) document the changes in the arterial pressure profile of pregnant relaxin KO mice. Understanding the mechanisms that underlie the regulation of arterial pressure in premenopausal females may uncover new strategies to treat hypertension in women (non-pregnant and pregnant) and men.


Asunto(s)
Presión Arterial/fisiología , Relaxina/fisiología , Animales , Peso Corporal/fisiología , Relojes Circadianos/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Tamaño de la Camada , Locomoción/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Relaxina/deficiencia , Caracteres Sexuales , Aumento de Peso/fisiología
20.
Pharmacol Res ; 116: 77-86, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27986554

RESUMEN

OBJECTIVE: To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. METHODS: Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. RESULTS: By 10days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3±2.4mmHg) compared to control mice (121.7±2.7mmHg; n=18, P<0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by ∼20mmHg (n=16, P<0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced (∼30%) renal expression of some (CCL5, CCL2; n=7-8; P<0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P>0.05). Anakinra reduced renal collagen content (n=6, P<0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P<0.001) that accompanied 1K/DOCA/salt-induced hypertension. CONCLUSION: Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Hipertensión Renal/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Animales , Antihipertensivos/farmacología , Biomarcadores/metabolismo , Acetato de Desoxicorticosterona/farmacología , Fibrosis/metabolismo , Hipertensión Renal/inducido químicamente , Hipertensión Renal/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA