Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 24(2): 613-627, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36594453

RESUMEN

This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 µg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 µg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 µg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.


Asunto(s)
Antiinfecciosos , Quitosano , Nanopartículas , Quitosano/farmacología , Quitosano/química , Polímeros/farmacología , Catecoles/farmacología , Catecoles/química , Nanopartículas/química , Antiinfecciosos/farmacología
2.
Opt Express ; 30(5): 6755-6767, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299454

RESUMEN

The improvement of techniques for the generation of near-infrared (NIR) few-cycle pulses is paving the way for new scenarios in time-resolved spectroscopy and the generation of ultrashort extreme-ultraviolet pulses through high-harmonic generation. In this work, we numerically study how to optimize the self-compression of NIR pulses using decreasing pressure gradients in hollow capillary fibers (HCFs). We identify a moderate nonlinear regime in which sub-cycle pulses are obtained with very good temporal quality from an input 30 fs pulse centered at a 800 nm wavelength and coupled as the fundamental mode of an argon-filled HCF fully evacuated at the output end. Surprisingly, we observe that there is a relatively broad region of parameters for which the optimum self-compression takes place, defined by a simple relation between the input pulse energy and the initial gas pressure.

3.
Opt Express ; 29(2): 929-937, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726318

RESUMEN

The generation of ultrashort visible energetic pulses is investigated numerically by the nonlinear propagation of infrared necklace beams in capillaries. We have developed a (3+1)D model that solves the nonlinear propagation equation, including the complete spatio-temporal dynamics and the azimuthal dependence of these structured beams. Due to their singular nonlinear propagation, the spectrum broadening inside the capillary extends to the visible region in a controlled way, despite the high nonlinearity, avoiding self-focusing. The results indicate that the features of these necklace beams enable the formation of visible pulses with pulse duration below 10 fs and energies of 50 µJ by soliton self-compression dynamics for different gas pressures inside the capillary.

4.
Opt Lett ; 45(20): 5636-5639, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057245

RESUMEN

Ultrafast laser pulses generated at the attosecond timescale represent a unique tool to explore the fastest dynamics in matter. An accurate control of their properties, such as polarization, is fundamental to shape three-dimensional laser-driven dynamics. We introduce a technique to generate attosecond pulse trains whose polarization state varies from pulse to pulse. This is accomplished by driving high-harmonic generation with two time-delayed bichromatic counter-rotating fields with proper orbital angular momentum (OAM) content. Our simulations show that the evolution of the polarization state along the train can be controlled via OAM, pulse duration, and time delay of the driving fields. We, thus, introduce an additional control into structured attosecond pulses that provides an alternative route to explore ultrafast dynamics with potential applications in chiral and magnetic materials.

5.
Phys Rev Lett ; 122(20): 203201, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31172784

RESUMEN

High-order harmonic generation stands as a unique nonlinear optical up-conversion process, mediated by a laser-driven electron recollision mechanism, which has been shown to conserve energy, linear momentum, and spin and orbital angular momentum. Here, we present theoretical simulations that demonstrate that this process also conserves a mixture of the latter, the torus-knot angular momentum J_{γ}, by producing high-order harmonics with driving pulses that are invariant under coordinated rotations. We demonstrate that the charge J_{γ} of the emitted harmonics scales linearly with the harmonic order, and that this conservation law is imprinted onto the polarization distribution of the emitted spiral of attosecond pulses. We also demonstrate how the nonperturbative physics of high-order harmonic generation affect the torus-knot angular momentum of the harmonics, and we show that this configuration harnesses the spin selection rules to channel the full yield of each harmonic into a single mode of controllable orbital angular momentum.

6.
Int J Mol Sci ; 20(12)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208091

RESUMEN

Acrylic bone cements (ABCs) have played a key role in orthopedic surgery mainly in arthroplasties, but their use is increasingly extending to other applications, such as remodeling of cancerous bones, cranioplasties, and vertebroplasties. However, these materials present some limitations related to their inert behavior and the risk of infection after implantation, which leads to a lack of attachment and makes necessary new surgical interventions. In this research, the physicochemical, thermal, mechanical, and biological properties of ABCs modified with chitosan (CS) and graphene oxide (GO) were studied. Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) scanning electron microscopy (SEM), Raman mapping, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), compression resistance, mechanical dynamic analysis (DMA), hydrolytic degradation, cell viability, alkaline phosphatase (ALP) activity with human osteoblasts (HOb), and antibacterial activity against Gram-negative bacteria Escherichia coli were used to characterize the ABCs. The results revealed good dispersion of GO nanosheets in the ABCs. GO provided an increase in antibacterial activity, roughness, and flexural behavior, while CS generated porosity, increased the rate of degradation, and decreased compression properties. All ABCs were not cytotoxic and support good cell viability of HOb. The novel formulation of ABCs containing GO and CS simultaneously, increased the thermal stability, flexural modulus, antibacterial behavior, and osteogenic activity, which gives it a high potential for its uses in orthopedic applications.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Cementos para Huesos , Quitosano , Grafito , Nanocompuestos , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cementos para Huesos/química , Cementos para Huesos/farmacología , Supervivencia Celular , Quitosano/química , Grafito/química , Humanos , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Nanocompuestos/química , Nanocompuestos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
8.
Int J Mol Sci ; 19(12)2018 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-30558349

RESUMEN

B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.


Asunto(s)
Ácido Fólico/farmacología , Medicina Regenerativa , Ingeniería de Tejidos , Complejo Vitamínico B/farmacología , Animales , Ácido Fólico/análogos & derivados , Ácido Fólico/uso terapéutico , Humanos , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Complejo Vitamínico B/química , Complejo Vitamínico B/uso terapéutico
9.
J Surg Res ; 220: 30-39, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180195

RESUMEN

BACKGROUND: As an alternative to sutures, meshes used for hernia repair can be fixed using cyanoacrylate-based adhesives. Attempts to improve these adhesives include alkyl-chain lengthening to reduce their toxicity. This preclinical study compares the long-term behavior of cyanoacrylates of different chain lengths already used in hernia repair and new ones for this application. MATERIALS AND METHODS: Partial abdominal wall defects were repaired using a Surgipro mesh in 18 New Zealand White rabbits, and groups were established according to the mesh fixation method: sutures (control), Glubran 2 (n-butyl), Ifabond (n-hexyl), and the new adhesives SafetySeal (n-butyl), and Evobond (n-octyl). Six months after surgery, recovered implants were examined to assess adhesive degradation, host tissue reaction, and biomechanical strength. RESULTS: All the cyanoacrylate groups showed good host tissue incorporation in the meshes. Macrophage responses to Glubran and Ifabond were quantitatively greater compared with sutures. Cell damage caused by the adhesives was similar, and only Glubran induced significantly more damage than sutures. Significantly lower collagen 1/3 messenger RNA expression was induced by Ifabond than the remaining fixation materials. No differences were observed in collagen expression except slightly reduced collagen I deposition in Glubran/Ifabond and collagen III deposition in the suture group. Mechanical strengths failed to vary between the suture and cyanoacrylate groups. CONCLUSIONS: All cyanoacrylates showed good long-term behavior and tolerance irrespective of their long or intermediate chain length. Cyanoacrylate residues persisted at 6 mo, indicating their incomplete degradation. Biomechanical strengths were similar both for the adhesives and sutures.


Asunto(s)
Cianoacrilatos/uso terapéutico , Hernia Abdominal/cirugía , Herniorrafia/instrumentación , Suturas , Animales , Fenómenos Biomecánicos , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Cianoacrilatos/efectos adversos , Cianoacrilatos/química , Modelos Animales de Enfermedad , Macrófagos/inmunología , Masculino , Conejos , Mallas Quirúrgicas
10.
J Surg Res ; 208: 68-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27993219

RESUMEN

BACKGROUND: Synthetic tissue adhesives (TA) are sometimes used in hernia repair surgery. This study compares the use of a new, noncommercial, long-chain cyanoacrylate (n-octyl) TA and Ifabond for mesh fixation. MATERIALS AND METHODS: In two implant models in the rabbit, expanded polytetrafluorethylene meshes were fixed to the parietal peritoneum using a TA or tacks (intraperitoneal model), or polypropylene meshes used to repair partial abdominal wall defects were fixed with a TA or sutures (extraperitoneal model). Animals were euthanized 14 or 90 d postsurgery and implant specimens were processed for microscopy (labeling of macrophages and apoptotic cells), peritoneal fluid and biomechanical strength testing. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determinated in peritoneal fluid. RESULTS: Mesothelial cell deposition on the intraperitoneal implants fixed using the new TA and Ifabond was adequate and similar IL-6 and TNF-α levels were detected in these implants. Intraperitoneal meshes fixed with tacks showed IL-6 overexpression. Three months after surgery, macrophage and apoptotic cell rates were higher for the intraperitoneal implants fixed with Ifabond versus the new TA or tacks. In the extraperitoneal model, reduced macrophage and cell damage responses were observed in the meshes fixed with sutures versus both TA. Tensile strengths were greater for the tacks versus TA in the intraperitoneal implants and similar for the sutures and TA in the extraperitoneal implants (90 d). CONCLUSIONS: Both TA showed a good cell response in both models. Their use in an intraperitoneal location resulted in reduced tensile strength compared with the tacks. However, strengths were comparable when extraperitoneal implants were fixed with these adhesives or sutures.


Asunto(s)
Cianoacrilatos/uso terapéutico , Herniorrafia/instrumentación , Mallas Quirúrgicas , Adhesivos Tisulares/uso terapéutico , Animales , Líquido Ascítico/metabolismo , Etiquetado Corte-Fin in Situ , Interleucina-6/metabolismo , Macrófagos/fisiología , Masculino , Microscopía Electrónica de Rastreo , Conejos , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Mater Sci Mater Med ; 28(4): 58, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28210969

RESUMEN

The less traumatic use of surgical adhesives rather than sutures for mesh fixation in hernia repair has started to gain popularity because they induce less host tissue damage and provoke less postoperative pain. This study examines the host tissue response to a new cyanoacrylate (CA) adhesive (n-octyl, OCA). Partial defects (3 × 5 cm) created in the rabbit anterior abdominal wall were repaired by mesh fixation using OCA, Glubran2®(n-butyl-CA), Ifabond®(n-hexyl-CA) or sutures. Samples were obtained at 14/90 days for morphology, collagens qRT-PCR/immunofluorescence and biomechanical studies. All meshes were successfully fixed. Seroma was detected mainly in the Glubran group at 14 days. Meshes fixed using all methods showed good host tissue incorporation. No signs of degradation of any of the adhesives were observed. At 14 days, collagen 1 and 3 mRNA expression levels were greater in the suture and OCA groups, and lower in Ifabond, with levels varying significantly in the latter group with respect to the others. By 90 days, expression levels had fallen in all groups, except for collagen 3 mRNA in Ifabond. Collagen I and III protein expression was marked in the suture and OCA groups at 90 days, but lower in Ifabond at both time points. Tensile strengths were similar across groups. Our findings indicate the similar behavior of the adhesives to sutures in terms of good tissue incorporation of the meshes and optimal repair zone strength. The lower seroma rate and similar collagenization to controls induced by OCA suggests its improved behavior over the other two glues. This article deals with a preclinical study to examine different aspects of the repair process in the host of three alkyl cyanoacrylates (n-butyl (GLUBRAN 2), n-hexyl (IFABOND), and n-octyl cyanoacrylate (EVOBOND)) compared to sutures (control), in the fixation of surgical meshes for hernia repair. It goes into detail about collagen deposition in the repair zone at short and medium term. The results obtained demonstrate lower seroma rate and similar collagenization to sutures induced by the n-octyl suggesting better behavior than the other two cyanoacrylates.


Asunto(s)
Colágeno Tipo III/química , Colágeno Tipo I/química , Cianoacrilatos/química , Hernia Abdominal/cirugía , Herniorrafia/métodos , Adhesivos Tisulares , Animales , Fenómenos Biomecánicos , Masculino , Diseño de Prótesis , ARN Mensajero/metabolismo , Conejos , Seroma/metabolismo , Resistencia a la Tracción , Cicatrización de Heridas
12.
J Mater Sci Mater Med ; 28(10): 152, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28861765

RESUMEN

Active targeting not only of a specific cell but also a specific organelle maximizes the therapeutic activity minimizing adverse side effects in healthy tissues. The present work describes the synthesis, characterization, and in vitro biological activity of active targeting nanoparticles (NP) for cancer therapy based on α-tocopheryl succinate (α-TOS), a well-known mitocan, that selectively induces apoptosis of cancer cells and proliferalting endothelial cells. Human epidermal growth factor receptor 2 (HER2) targeting peptide LTVSPWY (PEP) and triphenylphosphonium lipophilic cation (TPP) were conjugated to a previously optimized RAFT block copolymer that formed self-assembled NP of appropriate size for this application and low polydispersity by self-organized precipitation method. PEP and TPP were included in order to target not only HER2 positive cancer cells, but also the mitochondria of these cancer cells, respectively. The in vitro experiments demonstrated the faster incorporation of the active-targeting NP and the higher accumulation of TPP-bearing NP in the mitochondria of MDA-MB-453 HER2 positive cancer cells compared to non-decorated NP. Moreover, the encapsulation of additional α-TOS in the hydrophobic core of the NP was achieved with high efficiencies. The loaded NP presented higher cytotoxicity than unloaded NP but preserved their selectivity against cancer cells in a range of tested concentrations.


Asunto(s)
Nanopartículas/química , Oligopéptidos/química , alfa-Tocoferol/química , Carcinoma , Línea Celular Tumoral , Supervivencia Celular , Colorantes Fluorescentes , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Oligopéptidos/farmacología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo
13.
Nanomedicine ; 12(4): 965-976, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26733264

RESUMEN

6α-Methylprednisolone-loaded surfactant-free nanoparticles have been developed to palliate cisplatin ototoxicity. Nanoparticles were based on two different amphiphilic pseudo-block copolymers obtained by free radical polymerization and based on N-vinyl pyrrolidone and a methacrylic derivative of α-tocopheryl succinate or α-tocopherol. Copolymers formed spherical nanoparticles by nanoprecipitation in aqueous media that were able to encapsulate 6α-methylprednisolone in their inner core. The obtained nanovehicles were tested in vitro using HEI-OC1 cells and in vivo in a murine model. Unloaded nanoparticles were not able to significantly reduce the cisplatin ototoxicity. Loaded nanoparticles reduced cisplatin-ototoxicity in vitro being more active those based on the methacrylic derivative of vitamin E, due to their higher encapsulation efficiency. This formulation was able to protect hair cells in the base of the cochlea, having a positive effect in the highest frequencies tested in a murine model. A good correlation between the in vitro and the in vivo experiments was found. FROM THE CLINICAL EDITOR: Cisplatin is a commonly used chemotherapeutic agent against many cancers clinically. However, one of the significant side-effects remains ototoxicity. Here, the authors presented their data on using 6α-methylprednisolone-loaded nanoparticles in the reduction of ototoxicity in in-vitro and in-vivo experiments. Early promising results should enable further refinement of adopting this new approach in future experiments.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Metilprednisolona/administración & dosificación , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Cisplatino/efectos adversos , Cóclea/efectos de los fármacos , Cóclea/patología , Oído Interno/efectos de los fármacos , Oído Interno/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Humanos , Metilprednisolona/química , Ratones , Nanopartículas/química , Neoplasias/patología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Pirrolidinonas/administración & dosificación , Pirrolidinonas/química , Ratas
14.
J Mater Sci Mater Med ; 27(6): 109, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27138966

RESUMEN

The aim of this work was to synthesize semi-interpenetrating polymer networks (semi-IPNs) by free radical polymerization of N-isopropylacrylamide [poly (NIPAAm)], in the presence of chitosan (CHI), and to study the effect of pH and temperature changes on their rheological and swelling properties. The semi-IPNs are thermally stable up to about 400 °C and the presence of CHI increases the thermal degradation rate compared to bare poly (NIPAAm). The prepared systems presents a well-defined porosity and proved to be non-toxic, in vitro, on human embryonic skin fibroblast, thus offering appropriate support for cell proliferation. The semi-IPNs present, at physiological pH, swelling degrees well below those of the pure poly (NIPAAm). Differently, at acidic pH, the CHI macromolecules are protonated and become much more permeable to the diffusion of water giving a swelling degree that approaches that of bare poly (NIPAAm). The viscoelastic moduli of the semi-IPNs increase as a function of pH while the LCST remain unchanged. Moreover, the semi-IPNs viscoelastic moduli increase with the increase of CHI content and, in particular, the difference between the elastic modulus before and after the sol/gel transition is higher for the semi-IPN than for bare poly (NIPAAm) just at about physiological conditions.


Asunto(s)
Resinas Acrílicas/química , Quitosano/química , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Fibroblastos/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Reología , Piel/citología , Temperatura
15.
ACS Photonics ; 11(4): 1673-1683, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38645995

RESUMEN

High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.

16.
Phys Rev Lett ; 111(8): 083602, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010438

RESUMEN

We present a theoretical study of high-order harmonic generation (HHG) and propagation driven by an infrared field carrying orbital angular momentum (OAM). Our calculations unveil the following relevant phenomena: extreme-ultraviolet harmonic vortices are generated and survive to the propagation effects, vortices transport high-OAM multiples of the corresponding OAM of the driving field and, finally, the different harmonic vortices are emitted with similar divergence. We also show the possibility of combining OAM and HHG phase locking to produce attosecond pulses with helical pulse structure.

17.
Biomacromolecules ; 13(3): 624-35, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22339281

RESUMEN

This article reports the fabrication and characterization of NPs based on the self-assembling of polymeric drugs with amphiphilic character synthetized from oleyl 2-acetamido-2-deoxy-α-d-glucopyranoside methacrylate and vinyl pyrrolidone (OAGMA-VP). NPs were spherical, with an apparent hydrodynamic diameter between 91 and 226 nm and with zeta potential values that ensure stability. Atomic concentrations of C, O, and N, determined by X-ray photoelectron spectroscopy (XPS) of NPs, compared well with the corresponding theoretical values. High resolution XPS C1s spectra suggest that the carbons bound to heteroatoms or carbonyl groups are preferentially situated on the surface of the NP samples. ToF-SIMS spectra analyzed by principal component analysis (PCA) indicated that ions coming from acetyl and oleyl groups of OAGMA play important roles in the outer structure of NPs. Water contact angle and surface tension values of NPs were characteristic of hydrophilic surfaces, confirming the location of VP sequences on the surface. Cell culture assays showed that copolymeric NPs did not compromise biocompatibility of human fibroblasts according to ISO standard, but they were cytotoxic on a human glioblastoma cell line (A-172).


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Polímeros/química , Polímeros/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Cultivadas , Fibroblastos/citología , Glioblastoma/patología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Propiedades de Superficie
19.
Front Bioeng Biotechnol ; 10: 1058355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601388

RESUMEN

Articular cartilage is an avascular tissue that lines the ends of bones in diarthrodial joints, serves as support, acts as a shock absorber, and facilitates joint's motion. It is formed by chondrocytes immersed in a dense extracellular matrix (principally composed of aggrecan linked to hyaluronic acid long chains). Damage to this tissue is usually associated with traumatic injuries or age-associated processes that often lead to discomfort, pain and disability in our aging society. Currently, there are few surgical alternatives to treat cartilage damage: the most commonly used is the microfracture procedure, but others include limited grafting or alternative chondrocyte implantation techniques, however, none of them completely restore a fully functional cartilage. Here we present the development of hydrogels based on hyaluronic acid and chitosan loaded with chondroitin sulfate by a new strategy of synthesis using biodegradable di-isocyanates to obtain an interpenetrated network of chitosan and hyaluronic acid for cartilage repair. These scaffolds act as delivery systems for the chondroitin sulfate and present mucoadhesive properties, which stabilizes the clot of microfracture procedures and promotes superficial chondrocyte differentiation favoring a true articular cellular colonization of the cartilage. This double feature potentially improves the microfracture technique and it will allow the development of next-generation therapies against articular cartilage damage.

20.
Mater Sci Eng C Mater Biol Appl ; 120: 111716, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545868

RESUMEN

Human mesenchymal stem cells (hMSCs) are an attractive source for cell therapies because of their multiple beneficial properties, i.e. via immunomodulation and secretory factors. Microfluidics is particularly attractive for cell encapsulation since it provides a rapid and reproducible methodology for microgel generation of controlled size and simultaneous cell encapsulation. Here, we report the fabrication of hMSC-laden microcarriers based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device using a combination of an antioxidant glycerylphytate (G1Phy) compound and tripolyphosphate (TPP) as ionic crosslinkers (G1Phy:TPP-microgels). These microgels showed homogeneous size distributions providing an average diameter of 104 ± 12 µm, somewhat lower than that of control (127 ± 16 µm, TPP-microgels). The presence of G1Phy in microgels maintained cell viability over time and upregulated paracrine factor secretion under adverse conditions compared to control TPP-microgels. Encapsulated hMSCs in G1Phy:TPP-microgels were delivered to the subcutaneous space of immunocompromised mice via injection, and the delivery process was as simple as the injection of unencapsulated cells. Immediately post-injection, equivalent signal intensities were observed between luciferase-expressing microgel-encapsulated and unencapsulated hMSCs, demonstrating no adverse effects of the microcarrier on initial cell survival. Cell persistence, inferred by bioluminescence signal, decreased exponentially over time showing relatively higher half-life values for G1Phy:TPP-microgels compared to TPP-microgels and unencapsulated cells. In overall, results position the microfluidics generated G1Phy:TPP-microgels as a promising microcarrier for supporting hMSC survival and reparative activities.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Microgeles , Animales , Supervivencia Celular , Humanos , Ratones , Microfluídica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA