Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123585

RESUMEN

Listeria monocytogenes is a foodborne pathogen that represents a serious concern for ready-to-eat (RTE) meat products due to its persistence in production facilities. Among the different strategies for the control of this pathogen, the use of antimicrobial peptides derived from food by-products, such as slaughterhouse blood proteins, has emerged as a promising biocontrol strategy. This study evaluated for the first time the use of peptic hydrolysates of porcine hemoglobin as a biocontrol strategy of L. monocytogenes in RTE pork cooked ham. Pure porcine hemoglobin (Hb-P) and porcine cruor (P-Cru) were hydrolyzed using pepsin at different temperatures (37 °C for Hb-P and 23 °C for P-Cru) for 3 h. Then, the hydrolysates were characterized in terms of their degree of hydrolysis (DH), peptide population, color, and antimicrobial activity (in vitro and in situ) against three different serotypes of L. monocytogenes. Reducing the hydrolysis temperature of P-Cru by 14 °C resulted in a 2 percentage unit decrease in DH and some differences in the peptide composition. Nevertheless, the antimicrobial activity (in situ) was not significantly impacted, decreasing the viable count of L. monocytogenes by ~1-log and retarding their growth for 21 days at 4 °C. Although the color of the product was visibly altered, leading to more saturated reddish and yellowish tones and reduced brightness, the discoloration of the hydrolysates can be addressed. This biopreservation approach holds promise for other meat products and contributes to the circular economy concept of the meat industry by valorizing slaughterhouse blood and producing new antilisterial compounds.

2.
Foods ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359927

RESUMEN

The production of bioactive peptides from hemoglobin via peptic hydrolysis is a promising alternative to valorizing slaughterhouse blood proteins. Nevertheless, it has some limitations such as low yield, high cost of enzymes, and the use of chemical reagents. The latter is aggravated by the pH increase to inactivate the enzyme, which can affect the bioactivity of the peptides. Thus, this study aimed to evaluate the effect of pulsed electric fields (PEF) on the pepsin inactivation and biological activities (antimicrobial and antioxidant) of hemoglobin hydrolysates. Bovine (Hb-B) and porcine (Hb-P) hemoglobin were hydrolyzed with pepsin for 3 h and treated with PEFs to inactivate the enzyme. The degree of hydrolysis (DH) did not show significant changes after PEF inactivation, whereas peptide population analysis showed some changes in PEF-treated hydrolysates over time, suggesting residual pepsin activity. PEF treatments showed no significant positive or negative impact on antimicrobial and antioxidant activities. Additionally, the impact of pH (3, 7, and 10) on bioactivity was studied. Higher pH fostered stronger anti-yeast activity and DPPH-scavenging capacity, whereas pH 7 fostered antifungal activity. Thus, the use of hemoglobin from the meat industry combined with PEF treatments could fit the circular economy concept since bioactive peptides can be produced more eco-efficiently and recycled to reduce the spoilage of meat products. Nevertheless, further studies on PEF conditions must be carried out to achieve complete inactivation of pepsin and the potential enhancement of peptides' bioactivity.

3.
Foods ; 11(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36553781

RESUMEN

Porcine blood is an important by-product from slaughterhouses and an abundant source of proteins. Indeed, cruor, the solid part of blood, is mainly composed of hemoglobin. Its enzymatic hydrolysis with pepsin generates a diversity of peptides, particularly antimicrobials. One of the downsides of using these hydrolysates as food bio-preservatives is the color brought by the heme, which can be removed by discoloration. Nonetheless, the effects of this procedure on the antimicrobial peptide population have not been completely investigated. In this study, its impacts were evaluated on the final antibacterial and antifungal activities of a cruor hydrolysate. The results demonstrated that 38 identified and characterized peptides showed a partial or total decrease in the hydrolysate, after discoloration. Antifungal activities were observed for the raw and discolored hydrolysates: MICs vary between 0.1 and 30.0 mg/mL of proteins, and significant differences were detected between both hydrolysates for the strains S. boulardii, C. guilliermondii, K. marxianus, M. racemosus and P. chrysogenum. The raw hydrolysate showed up to 12 times higher antifungal activities. Hence, peptides with the highest relative abundance decrease after discoloration were synthesized and tested individually. In total, eight new antifungal peptides were characterized as active and promising. To our knowledge, this is the first time that effective antifungal peptide sequences have been reported from porcine cruor hydrolysates.

4.
Food Chem ; 237: 581-587, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28764039

RESUMEN

This study evaluated the physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds (SIS) at four different doses (0, 1, 5 and 8kGy). Fatty acid composition, tocopherol content, FTIR spectra, density, refractive index, acidity, peroxide value (PV), p-anisidine index (p-An), oxidation induction period (IP), and color were chosen as test parameters. Overall, the irradiation treatment did not significantly affect the physicochemical properties of the Sacha Inchi oils, although slight increases were found in the PV and p-An, as the irradiation dose increased. γ-Irradiation led to a decrease in the concentration of γ- and δ-tocopherol, as well as in the IP. However, according to the FTIR analyses, the functional groups of the oils were not significantly affected by the γ-irradiation. These results suggest that γ-irradiation at 1-5kGy, might be recommended as a suitable eco-friendly technology for the preservation of SIS used for oil production.


Asunto(s)
Euphorbiaceae , Aceites de Plantas/química , Fenómenos Químicos , Ácidos Grasos , Semillas , Tocoferoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA