Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38676224

RESUMEN

Patient care and management have entered a new arena, where intelligent technology can assist clinicians in both diagnosis and treatment [...].


Asunto(s)
Inteligencia Artificial , Atención a la Salud , Internet de las Cosas , Humanos
2.
Sensors (Basel) ; 21(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34833807

RESUMEN

The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. However, in some practical situations, perfect data exchange may not be possible among the nodes. In this paper, we develop a new version of ILMS algorithm, wherein in its adaptation step, only a random subset of the coordinates of update vector is available. We draw a comparison between the proposed coordinate-descent incremental LMS (CD-ILMS) algorithm and the ILMS algorithm in terms of convergence rate and computational complexity. Employing the energy conservation relation approach, we derive closed-form expressions to describe the learning curves in terms of excess mean-square-error (EMSE) and mean-square deviation (MSD). We show that, the CD-ILMS algorithm has the same steady-state error performance compared with the ILMS algorithm. However, the CD-ILMS algorithm has a faster convergence rate. Numerical examples are given to verify the efficiency of the CD-ILMS algorithm and the accuracy of theoretical analysis.

3.
Sensors (Basel) ; 20(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370185

RESUMEN

Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Profundo , Procesamiento de Señales Asistido por Computador , Trastornos del Sueño-Vigilia , Algoritmos , Electrocardiografía , Entropía , Frecuencia Cardíaca , Humanos , Polisomnografía , Respiración , Apnea Obstructiva del Sueño , Análisis de Ondículas
4.
J Neural Eng ; 21(1)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38295418

RESUMEN

Objective.the P300-based brain-computer interface (BCI) establishes a communication channel between the mind and a computer by translating brain signals into commands. These systems typically employ a visual oddball paradigm, where different objects (linked to specific commands) are randomly and frequently intensified. Upon observing the target object, users experience an elicitation of a P300 event-related potential in their electroencephalography (EEG). However, detecting the P300 signal can be challenging due to its very low signal-to-noise ratio (SNR), often compromised by the sequence of visual evoked potentials (VEPs) generated in the occipital regions of the brain in response to periodic visual stimuli. While various approaches have been explored to enhance the SNR of P300 signals, the impact of VEPs has been largely overlooked. The main objective of this study is to investigate how VEPs impact P300-based BCIs. Subsequently, the study aims to propose a method for EEG spatial filtering to alleviate the effect of VEPs and enhance the overall performance of these BCIs.Approach.our approach entails analyzing recorded EEG signals from visual P300-based BCIs through temporal, spectral, and spatial analysis techniques to identify the impact of VEPs. Subsequently, we introduce a regularized version of the xDAWN algorithm, a well-established spatial filter known for enhancing single-trial P300s. This aims to simultaneously enhance P300 signals and suppress VEPs, contributing to an improved overall signal quality.Main results.analyzing EEG signals shows that VEPs can significantly contaminate P300 signals, resulting in a decrease in the overall performance of P300-based BCIs. However, our proposed method for simultaneous enhancement of P300 and suppression of VEPs demonstrates improved performance in P300-based BCIs. This improvement is verified through several experiments conducted with real P300 data.Significance.this study focuses on the effects of VEPs on the performance of P300-based BCIs, a problem that has not been adequately addressed in previous studies. It opens up a new path for investigating these BCIs. Moreover, the proposed spatial filtering technique has the potential to further enhance the performance of these systems.


Asunto(s)
Interfaces Cerebro-Computador , Ciclohexilaminas , Potenciales Evocados Visuales , Indenos , Potenciales Evocados , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300/fisiología , Algoritmos
5.
Bioengineering (Basel) ; 11(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534557

RESUMEN

Here, we present an effective application of adaptive cooperative networks, namely assisting disables in navigating in a crowd in a pandemic or emergency situation. To achieve this, we model crowd movement and introduce a cooperative learning approach to enable cooperation and self-organization of the crowd members with impaired health or on wheelchairs to ensure their safe movement in the crowd. Here, it is assumed that the movement path and the varying locations of the other crowd members can be estimated by each agent. Therefore, the network nodes (agents) should continuously reorganize themselves by varying their speeds and distances from each other, from the surrounding walls, and from obstacles within a predefined limit. It is also demonstrated how the available wireless trackers such as AirTags can be used for this purpose. The model effectiveness is examined with respect to the real-time changes in environmental parameters and its efficacy is verified.

6.
Comput Biol Med ; 168: 107782, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070202

RESUMEN

Brain interictal epileptiform discharges (IEDs), as one of the hallmarks of epileptic brain, are transient events captured by electroencephalogram (EEG). IEDs are generated by seizure networks, and they occur between seizures (interictal periods). The development of a robust method for IED detection could be highly informative for clinical treatment procedures and epileptic patient management. Since 1972, different machine learning techniques, from template matching to deep learning, have been developed to automatically detect IEDs from scalp EEG (scEEG) and intracranial EEG (iEEG). While the scEEG signals suffer from low information details and high attenuation of IEDs due to the high skull electrical impedance, the iEEG signals recorded using implanted electrodes enjoy higher details and are more suitable for identifying the IEDs. In this review paper, we group IED detection techniques into six categories: (1) template matching, (2) feature representation (mimetic, time-frequency, and nonlinear features), (3) matrix decomposition, (4) tensor factorization, (5) neural networks, and (6) estimation of the iEEG from the concurrent scEEG followed by detection and classification. The methods are compared quantitatively (e.g., in terms of accuracy, sensitivity, and specificity), and their general advantages and limitations are described. Finally, current limitations and possible future research paths related to this field are mentioned.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Encéfalo , Convulsiones , Aprendizaje Automático , Cuero Cabelludo
7.
IEEE Trans Biomed Eng ; 71(6): 1950-1957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38252565

RESUMEN

This work proposes a new formulation for common spatial patterns (CSP), often used as a powerful feature extraction technique in brain-computer interfacing (BCI) and other neurological studies. In this approach, applied to multiple subjects' data and named as hyperCSP, the individual covariance and mutual correlation matrices between multiple simultaneously recorded subjects' electroencephalograms are exploited in the CSP formulation. This method aims at effectively isolating the common motor task between multiple heads and alleviate the effects of other spurious or undesired tasks inherently or intentionally performed by the subjects. This technique can provide a satisfactory classification performance while using small data size and low computational complexity. By using the proposed hyperCSP followed by support vector machines classifier, we obtained a classification accuracy of 81.82% over 8 trials in the presence of strong undesired tasks. We hope that this method could reduce the training error in multi-task BCI scenarios. The recorded valuable motor-related hyperscanning dataset is available for public use to promote the research in this area.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Máquina de Vectores de Soporte , Humanos , Electroencefalografía/métodos , Algoritmos , Adulto , Masculino , Femenino , Encéfalo/fisiología
8.
IEEE Trans Biomed Eng ; PP2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652632

RESUMEN

Identification of seizure sources in the brain is of paramount importance, particularly for drug-resistant epilepsy patients who may require surgical operation. Interictal epileptiform discharges (IEDs), which may or may not be frequent, are known to originate from seizure networks. Delayed responses (DRs) to brain electrical stimulation have been recently discovered. If DRs and IEDs come from the same location and the DRs can be accurately localized, there will be a significant step in identification of the seizure sources. The solution to this important question has been investigated in this paper. For this, we have exploited the morphology of these spike-type events, as well as the variability in their temporal locations, to develop new constraints for an adaptive Bayesian beamformer that outperforms the conventional and recently proposed beamformers even for identifying correlated sources. This beamformer is applied to an array (a.k.a mat) of cortical EEG electrodes. The developed approach has been tested on 300 data segments from five epileptic patients included in this study, which clinically represent a large population of candidates for surgical treatment. As the significant outcome of applying this beamformer, it is very likely (if not certain) that for an epileptic subject, the IEDs and DRs originate from the same location in the brain. This paves the way for a quick identification of the source(s) of seizure in the brain.

9.
IEEE Trans Biomed Eng ; 70(3): 867-876, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36063525

RESUMEN

OBJECTIVE: Detection of event-related potentials (ERPs) in electroencephalography (EEG) is of great interest in the study of brain responses to various stimuli. This is challenging due to the low signal-to-noise ratio of these deflections. To address this problem, a new scheme to detect the ERPs based on smoothness priors is proposed. METHODS: The problem is considered as a binary hypothesis test and solved using a smooth version of the generalized likelihood ratio test (SGLRT). First, we estimate the parameters of probability density functions from the training data under the Gaussian assumption. Then, these parameters are treated as known values and the unknown ERPs are estimated under the smoothness constraint. The performance of the proposed SGLRT is assessed for ERP detection in post-stimuli EEG recordings of two oddball settings. We compared our method with several powerful methods regarding ERP detection. RESULTS: The presented method performs better than the competing algorithms and improves the classification accuracy. CONCLUSION: SGLRT can be employed as a powerful means for different ERP detection schemes. SIGNIFICANCE: The proposed scheme is opening a new direction in ERP identification which provides better classification results compared to several popular ERP detection methods.


Asunto(s)
Algoritmos , Encéfalo , Electroencefalografía , Funciones de Verosimilitud , Distribución Normal
10.
Int J Neural Syst ; 33(2): 2350008, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36495050

RESUMEN

To enable an accurate recognition of neuronal excitability in an epileptic brain for modeling or localization of epileptic zone, here the brain response to single-pulse electrical stimulation (SPES) has been decomposed into its constituent components using adaptive singular spectrum analysis (SSA). Given the response at neuronal level, these components are expected to be the inhibitory and excitatory components. The prime objective is to thoroughly investigate the nature of delayed responses (elicited between 100[Formula: see text]ms-1 s after SPES) for localization of the epileptic zone. SSA is a powerful subspace signal analysis method for separation of single channel signals into their constituent uncorrelated components. The consistency in the results for both early and delayed brain responses verifies the usability of the approach.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/terapia , Encéfalo , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos
11.
Int J Neural Syst ; 33(10): 2350050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567860

RESUMEN

Delayed responses (DRs) to single pulse electrical stimulation (SPES) in patients with severe refractory epilepsy, from their intracranial recordings, can help to identify regions associated with epileptogenicity. Automatic DR localization is a large step in speeding up the identification of epileptogenic focus. Here, for the first time, an adaptive iterative linearly constrained minimum variance beamformer (AI-LCMV) is developed and employed to localize the DR sources from intracranial electroencephalogram (EEG) recorded using subdural electrodes. The prime objective here is to accurately localize the regions for the corresponding DRs using an adaptive localization method that exploits the morphology of DRs as the desired sources. The traditional closed-form linearly constrained minimum variance (CF-LCMV) solution is meant for tracking the sources with dominating power. Here, by incorporating the morphology of DRs, as a constraint, to an iterative linearly constrained minimum variance (LCMV) solution, the array of subdural electrodes is used to localize the low-power DRs, some not even visible in any of the electrode signals. The results from the cases included in this study also indicate more distinctive locations compared to those achievable by conventional beamformers. Most importantly, the proposed AI-LCMV is able to localize the DRs invisible over other electrodes.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Encéfalo/fisiología , Electroencefalografía/métodos , Epilepsia Refractaria/terapia , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos
12.
Schizophrenia (Heidelb) ; 9(1): 64, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735164

RESUMEN

Ganzfeld conditions induce alterations in brain function and pseudo-hallucinatory experiences, particularly in people with high positive schizotypy. The current study uses graph-based parameters to investigate and classify brain networks under Ganzfeld conditions as a function of positive schizotypy. Participants from the general population (14 high schizotypy (HS), 29 low schizotypy (LS)) had an electroencephalography assessment during Ganzfeld conditions, with varying visual activation (8 frequencies of random light flicker) and soundscape-induced mood (neutral, serenity, and anxiety). Weighted functional networks were computed in six frequency sub-bands (delta, theta, alpha-low, alpha-high, beta, and gamma) as a function of light-flicker frequency and mood. The brain network was analyzed using graph theory parameters, including clustering coefficient (CC), strength, and global efficiency (GE). It was found that the LS groups had higher CC and strength than the HS groups, especially in bilateral temporal and frontotemporal brain regions. Moreover, some decreases in CC and strength measures were found in LS groups among occipital and parieto-occipital brain regions. LS groups also had significantly higher GE in all Ganzfeld conditions compared to the HS groups. The random under-sampling boosting (RUSBoost) algorithm achieved the best classification performance with an accuracy of 95.34%, specificity of 96.55%, and sensitivity of 92.85% during an anxiety-induction Ganzfeld condition. This is the first exploration of the relationship between brain functional state changes under Ganzfeld conditions in individuals who vary in positive schizotypy. The accuracy of graph-based parameters in classifying brain states as a function of schizotypy is shown, particularly for brain activity during anxiety induction, and should be investigated in psychosis.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37276101

RESUMEN

The application of machine learning-based tele-rehabilitation faces the challenge of limited availability of data. To overcome this challenge, data augmentation techniques are commonly employed to generate synthetic data that reflect the configurations of real data. One such promising data augmentation technique is the Generative Adversarial Network (GAN). However, GANs have been found to suffer from mode collapse, a common issue where the generated data fails to capture all the relevant information from the original dataset. In this paper, we aim to address the problem of mode collapse in GAN-based data augmentation techniques for post-stroke assessment. We applied the GAN to generate synthetic data for two post-stroke rehabilitation datasets and observed that the original GAN suffered from mode collapse, as expected. To address this issue, we propose a Time Series Siamese GAN (TS-SGAN) that incorporates a Siamese network and an additional discriminator. Our analysis, using the longest common sub-sequence (LCSS), demonstrates that TS-SGAN generates data uniformly for all elements of two testing datasets, in contrast to the original GAN. To further evaluate the effectiveness of TS-SGAN, we encode the generated dataset into images using Gramian Angular Field and classify them using ResNet-18. Our results show that TS-SGAN achieves a significant accuracy increase of classification accuracy (35.2%-42.07%) for both selected datasets. This represents a substantial improvement over the original GAN.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Factores de Tiempo , Aprendizaje Automático
14.
Biosensors (Basel) ; 12(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735544

RESUMEN

Wearable technology including sensors, sensor networks, and the associated devices have opened up space in a variety of applications [...].


Asunto(s)
Dispositivos Electrónicos Vestibles , Prótesis e Implantes
15.
Artículo en Inglés | MEDLINE | ID: mdl-35862320

RESUMEN

Sleep is a vital process of our daily life as we roughly spend one-third of our lives asleep. In order to evaluate sleep quality and potential sleep disorders, sleep stage classification is a gold standard method. In this paper, we introduce a novel fully convolutional neural network architecture (SleepFCN) to classify sleep stages into five classes using single-channel electroencephalograms (EEGs). The framework of SleepFCN includes two major parts for feature extraction and temporal sequence encoding namely multi-scale feature extraction (MSFE) and residual dilated causal convolutions (ResDC), respectively. These are then followed by convolutional layers of 1-sized kernels instead of dense layers to build the fully convolutional neural network. Due to the imbalance in the distribution of sleep stages, we incorporate a weight corresponding to the number of samples of each class in our loss function. We evaluated the performance of SleepFCN using the Sleep-EDF and SHHS datasets. Our experimental results show that the proposed method outperforms state-of-the-art works in both classification correctness and learning speed.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía/métodos , Humanos , Redes Neurales de la Computación , Sueño , Fases del Sueño
16.
Int J Neural Syst ; 32(4): 2250013, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35236254

RESUMEN

Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high versus low schizotypy (LS) status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy (HS) and 11 LS participants during an emotional auditory odd-ball task. The brain connectivity signals for machine learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The values of DTF power in five standard frequency bands are used as features. The support vector machines (SVMs) revealed significant differences between HS and LS. The accuracy, specificity, and sensitivity of the results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may lead to the early identification of schizophrenia and other spectrum disorders.


Asunto(s)
Esquizofrenia , Trastorno de la Personalidad Esquizotípica , Encéfalo/diagnóstico por imagen , Electroencefalografía , Lóbulo Frontal , Humanos , Esquizofrenia/diagnóstico por imagen , Trastorno de la Personalidad Esquizotípica/diagnóstico por imagen , Trastorno de la Personalidad Esquizotípica/psicología
17.
J Neural Eng ; 19(6)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36541455

RESUMEN

Objective. Schizotypy, a potential phenotype for schizophrenia, is a personality trait that depicts psychosis-like signs in the normal range of psychosis continuum. Family communication may affect the social functioning of people with schizotypy. Greater family stress, such as irritability, criticism and less praise, is perceived at a higher level of schizotypy. This study aims to determine the differences between people with high and low levels of schizotypy using electroencephalography (EEG) during criticism, praise and neutral comments. EEGs were recorded from 29 participants in the general community who varied from low schizotypy to high schizotypy (HS) during a novel emotional auditory oddball task.Approach. We consider the difference in event-related potential parameters, namely the amplitude and latency of P300 subcomponents (P3a and P3b), between pairs of target words (standard, positive, negative and neutral). A model based on tensor factorization is then proposed to detect these components from the EEG using the CANDECOMP/PARAFAC decomposition technique. Finally, we employ the mutual information estimation method to select influential features for classification.Main results.The highest classification accuracy, sensitivity, and specificity of 93.1%, 94.73%, and 90% are obtained via leave-one-out cross validation.Significance. This is the first attempt to investigate the identification of individuals with psychometrically-defined HS from brain responses that are specifically associated with perceiving family stress and schizotypy. By measuring these brain responses to social stress, we achieve the goal of improving the accuracy in detection of early episodes of psychosis.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Trastorno de la Personalidad Esquizotípica , Humanos , Trastorno de la Personalidad Esquizotípica/diagnóstico , Trastorno de la Personalidad Esquizotípica/psicología , Trastornos Psicóticos/diagnóstico , Potenciales Evocados , Emociones , Electroencefalografía
18.
IEEE J Biomed Health Inform ; 25(9): 3408-3415, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33760743

RESUMEN

Electroencephalography (EEG) is commonly used to measure the depth of anesthesia (DOA) because EEG reflects surgical pain and state of the brain. However, precise and real-time estimation of DOA index for painful surgical operations is challenging due to problems such as postoperative complications and accidental awareness. To tackle these problems, we propose a new combinatorial deep learning structure involving convolutional neural networks (inspired by the inception module), bidirectional long short-term memory, and an attention layer. The proposed model uses the EEG signal to continuously predicts the bispectral index (BIS). It is trained over a large dataset, mostly from those under general anesthesia with few cases receiving sedation/analgesia and spinal anesthesia. Despite the imbalance distribution of BIS values in different levels of anesthesia, our proposed structure achieves convincing root mean square error of 5.59 ± 1.04 and mean absolute error of 4.3 ± 0.87, as well as improvement in area under the curve of 15% on average, which surpasses state-of-the-art DOA estimation methods. The DOA values are also discretized into four levels of anesthesia and the results demonstrate strong inter-subject classification accuracy of 88.7% that outperforms the conventional methods.


Asunto(s)
Anestesia , Aprendizaje Profundo , Algoritmos , Electroencefalografía , Humanos , Redes Neurales de la Computación
19.
Int J Neural Syst ; 31(8): 2150019, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33775232

RESUMEN

Interictal epileptiform discharges (IEDs) are elicited from an epileptic brain, whereas they can also be due to other neurological abnormalities. The diversity in their morphologies, their strengths, and their sources within the brain cause a great deal of uncertainty in their labeling by clinicians. The aim of this study is therefore to exploit and incorporate this uncertainty (the probability of the waveform being an IED) in the IED detection system which combines spatial component analysis (SCA) with the IED probabilities referred to as SCA-IEDP-based method. For comparison, we also propose and study SCA-based method in which probability of the waveform being an IED is ignored. The proposed models are employed to detect IEDs in two different classification approaches: (1) subject-dependent and (2) subject-independent classification approaches. The proposed methods are compared with two other state-of-the-art methods namely, time-frequency features and tensor factorization methods. The proposed SCA-IEDP model has achieved superior performance in comparison with the traditional SCA and other competing methods. It achieved 79.9% and 63.4% accuracy values in subject-dependent and subject-independent classification approaches, respectively. This shows that considering the IED probabilities in designing an IED detection system can boost its performance.


Asunto(s)
Epilepsia , Cuero Cabelludo , Encéfalo , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Incertidumbre
20.
J Neural Eng ; 18(6)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34818640

RESUMEN

Objective.Interictal epileptiform discharges (IEDs) occur between two seizures onsets. IEDs are mainly captured by intracranial recordings and are often invisible over the scalp. This study proposes a model based on tensor factorization to map the time-frequency (TF) features of scalp EEG (sEEG) to the TF features of intracranial EEG (iEEG) in order to detect IEDs from over the scalp with high sensitivity.Approach.Continuous wavelet transform is employed to extract the TF features. Time, frequency, and channel modes of IED segments from iEEG recordings are concatenated into a four-way tensor. Tucker and CANDECOMP/PARAFAC decomposition techniques are employed to decompose the tensor into temporal, spectral, spatial, and segmental factors. Finally, TF features of both IED and non-IED segments from scalp recordings are projected onto the temporal components for classification.Main results.The model performance is obtained in two different approaches: within- and between-subject classification approaches. Our proposed method is compared with four other methods, namely a tensor-based spatial component analysis method, TF-based method, linear regression mapping model, and asymmetric-symmetric autoencoder mapping model followed by convolutional neural networks. Our proposed method outperforms all these methods in both within- and between-subject classification approaches by respectively achieving 84.2% and 72.6% accuracy values.Significance.The findings show that mapping sEEG to iEEG improves the performance of the scalp-based IED detection model. Furthermore, the tensor-based mapping model outperforms the autoencoder- and regression-based mapping models.


Asunto(s)
Epilepsia , Cuero Cabelludo , Electrocorticografía , Electroencefalografía/métodos , Epilepsia/diagnóstico , Humanos , Análisis de Ondículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA