Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mar Drugs ; 13(5): 2875-89, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26006710

RESUMEN

The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(É©)-, lambda(λ)-, and kappa(κ)-carrageenan at 1 g·L-1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS) and lipoxygenase (LOX), were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA) dependent, and that it could be explored in plant protection against viroid infection.


Asunto(s)
Carragenina/farmacología , Replicación del ADN/efectos de los fármacos , Enfermedades de las Plantas/virología , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Viroides/efectos de los fármacos , Ciclopentanos/metabolismo , Oxidorreductasas Intramoleculares/genética , Lipooxigenasa/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Viroides/genética
2.
Mar Drugs ; 13(10): 6407-24, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26492254

RESUMEN

We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against ß-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aß1-42 gene. The methanol extract of C. crispus (CCE), delayed ß-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aß species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of ß-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against ß-amyloid-induced toxicity in C. elegans, partly through reduced ß-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS).


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Chondrus/química , Parálisis/prevención & control , Extractos Vegetales/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Animales Modificados Genéticamente , Western Blotting , Humanos , Metanol/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Regulación hacia Arriba/efectos de los fármacos
3.
Plant Methods ; 20(1): 89, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858767

RESUMEN

BACKGROUND: Optimum moisture in straw and grain at maturity is important for timely harvesting of wheat. Grain harvested at the right time has reduced chance of being affected by adverse weather conditions which is important to maintain grain quality and end use functionality. Wheat varieties with a short dry down period could help in timely harvest of the crop. However, measuring single kernel moisture in wheat and other small grain crops is a phenotyping bottleneck which requires characterising moisture content of the developing kernel at physiological maturity. RESULTS: Here we report developing a pin-based probe to detect moisture in a developing wheat kernel required for determining physiological maturity. An in-house designed pin-based probe was used with different commercially available electronic moisture meters to assess the moisture content of the individual kernels in spikes with high accuracy (R2 = 0.73 to 0.94, P < 0.001) compared with a reference method of oven drying. The average moisture values varied among different electronic moisture meters and the oven-dry method and differences in values were minimized at low kernel moisture content (< 50%). The single kernel moisture probe was evaluated in the field to predict the physiological maturity in wheat using 38% moisture content as the reference and visible notes on kernel stage. CONCLUSION: The pin-based moisture probe is a reliable tool for wheat physiologists and breeders to conveniently and accurately measure moisture content in developing grain that will aid in identifying wheat germplasm with fast dry-down characteristics.

4.
Int J Mol Sci ; 14(2): 3921-45, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23434671

RESUMEN

Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein "RS1" was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.

5.
Front Plant Sci ; 14: 1255961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093998

RESUMEN

Wheat lodging is a serious problem affecting grain yield, plant health, and grain quality. Addressing the lodging issue in wheat is a desirable task in breeding programs. Precise detection of lodging levels during wheat screening can aid in selecting lines with resistance to lodging. Traditional approaches to phenotype lodging rely on manual data collection from field plots, which are slow and laborious, and can introduce errors and bias. This paper presents a framework called 'LodgeNet,' that facilitates wheat lodging detection. Using Unmanned Aerial Vehicles (UAVs) and Deep Learning (DL), LodgeNet improves traditional methods of detecting lodging with more precision and efficiency. Using a dataset of 2000 multi-spectral images of wheat plots, we have developed a novel image registration technique that aligns the different bands of multi-spectral images. This approach allows the creation of comprehensive RGB images, enhancing the detection and classification of wheat lodging. We have employed advanced image enhancement techniques to improve image quality, highlighting the important features of wheat lodging detection. We combined three color enhancement transformations into two presets for image refinement. The first preset, 'Haze & Gamma Adjustment,' minimize atmospheric haze and adjusts the gamma, while the second, 'Stretching Contrast Limits,' extends the contrast of the RGB image by calculating and applying the upper and lower limits of each band. LodgeNet, which relies on the state-of-the-art YOLOv8 deep learning algorithm, could detect and classify wheat lodging severity levels ranging from no lodging (Class 1) to severe lodging (Class 9). The results show the mean Average Precision (mAP) of 0.952% @0.5 and 0.641% @0.50-0.95 in classifying wheat lodging severity levels. LodgeNet promises an efficient and automated high-throughput solution for real-time crop monitoring of wheat lodging severity levels in the field.

6.
Front Plant Sci ; 14: 1166282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457352

RESUMEN

Fusarium head blight (FHB) is a highly destructive fungal disease of wheat to which host resistance is quantitatively inherited and largely influenced by the environment. Resistance to FHB has been associated with taller height and later maturity; however, a further understanding of these relationships is needed. An association mapping panel (AMP) of 192 predominantly Canadian spring wheat was genotyped with the wheat 90K single-nucleotide polymorphism (SNP) array. The AMP was assessed for FHB incidence (INC), severity (SEV) and index (IND), days to anthesis (DTA), and plant height (PLHT) between 2015 and 2017 at three Canadian FHB-inoculated nurseries. Seven multi-environment trial (MET) datasets were deployed in a genome-wide association study (GWAS) using a single-locus mixed linear model (MLM) and a multi-locus random SNP-effect mixed linear model (mrMLM). MLM detected four quantitative trait nucleotides (QTNs) for INC on chromosomes 2D and 3D and for SEV and IND on chromosome 3B. Further, mrMLM identified 291 QTNs: 50 (INC), 72 (SEV), 90 (IND), 41 (DTA), and 38 (PLHT). At two or more environments, 17 QTNs for FHB, DTA, and PLHT were detected. Of these 17, 12 QTNs were pleiotropic for FHB traits, DTA, and PLHT on chromosomes 1A, 1D, 2D, 3B, 5A, 6B, 7A, and 7B; two QTNs for DTA were detected on chromosomes 1B and 7A; and three PLHT QTNs were located on chromosomes 4B and 6B. The 1B DTA QTN and the three pleiotropic QTNs on chromosomes 1A, 3B, and 6B are potentially identical to corresponding quantitative trait loci (QTLs) in durum wheat. Further, the 3B pleiotropic QTN for FHB INC, SEV, and IND co-locates with TraesCS3B02G024900 within the Fhb1 region on chromosome 3B and is ~3 Mb from a cloned Fhb1 candidate gene TaHRC. While the PLHT QTN on chromosome 6B is putatively novel, the 1B DTA QTN co-locates with a disease resistance protein located ~10 Mb from a Flowering Locus T1-like gene TaFT3-B1, and the 7A DTA QTN is ~5 Mb away from a maturity QTL QMat.dms-7A.3 of another study. GWAS and QTN candidate genes enabled the characterization of FHB resistance in relation to DTA and PLHT. This approach should eventually generate additional and reliable trait-specific markers for breeding selection, in addition to providing useful information for FHB trait discovery.

7.
Mar Drugs ; 9(11): 2256-2282, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163185

RESUMEN

Tasco(®), a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco(®) water extract (TWE) at 300 µg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 µg/mL and 600 µg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco(®) imparted thermal stress tolerance in the C. elegans by altering stress related biochemical pathways.


Asunto(s)
Ascophyllum/química , Regulación hacia Abajo , Trastornos de Estrés por Calor/prevención & control , Regulación hacia Arriba , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Genes Reporteros , Espectrometría de Masas , Faringe/metabolismo , Proteínas/genética , Solubilidad , Tasa de Supervivencia , Factores de Tiempo
8.
Front Plant Sci ; 12: 642955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841470

RESUMEN

Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4-18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9-14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.

9.
Plant Cell Rep ; 29(10): 1097-107, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20593185

RESUMEN

The hybrid Bacillus thuringiensis (Bt) δ-endotoxin gene Cry1Ab/Ac was used to develop a transgenic Bt rice (Oryza sativa L.) targeting lepidopteran insects of rice. Here, we show the production of a marker-free and tissue-specific expressing transgenic Bt rice line L24 using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L24 carries a single copy of marker-free T-DNA that contains the Cry1Ab/Ac gene driven by a maize phosphoenolpyruvate carboxylase (PEPC) gene promoter. The marker-free T-DNA was integrated into the 3' untranslated region of rice gene Os01g0154500 on the short arm of chromosome 1. Compared to the constitutive and non-specific expression of the P (Actin1):Cry1Ab/Ac:T (Nos) gene in the control Bt rice line T51-1, the P ( Pepc ):Cry1Ab/Ac:T (Nos ) gene was detected only in the leaf and stem tissues of L24. More importantly, compared to high levels of CRY1Ab/Ac proteins accumulated in T51-1 seeds, the CRY1Ab/Ac proteins were not detectable in L24 seeds by Western blot analysis. As demonstrated by insect bioassay, L24 provided similar level of resistance to rice leaffolder (Cnaphalocrocis medinalis) as T51-1. The marker-free transgenic line L24 can be used directly in rice breeding for insect resistance to lepidopteran insects where absence of Bt toxin protein in the seed is highly desirable.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Oryza/genética , Control Biológico de Vectores , Animales , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/genética , Endotoxinas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Hemolisinas/genética , Lepidópteros , Datos de Secuencia Molecular , Oryza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Transformación Genética
10.
J Econ Entomol ; 101(2): 575-83, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18459427

RESUMEN

Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.


Asunto(s)
Hemípteros/fisiología , Oryza/genética , Oryza/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Animales , Conducta Animal , Predisposición Genética a la Enfermedad
11.
Biotechnol Biofuels ; 5(1): 47, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22809288

RESUMEN

BACKGROUND: Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L.), a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. RESULTS: Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF), was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were differentially expressed during endosperm development. CONCLUSION: The formation of oil bodies in jatropha endosperm is developmentally regulated. The expression of the majority of fatty acid and lipid biosynthetic genes is highly consistent with the development of oil bodies and endosperm in jatropha seeds, while the genes encoding enzymes with similar function may be differentially expressed during endosperm development. These results not only provide the initial information on spatial and temporal expression of fatty acid and lipid biosynthetic genes in jatropha developing endosperm, but are also valuable to identify the rate-limiting genes for storage lipid biosynthesis and accumulation during seed development.

12.
PLoS One ; 7(8): e43990, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952840

RESUMEN

Liuwei Dihuang (LWDH), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of ß-amyloid (Aß) induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE) and water extract (LWDH-WE). Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. In vitro studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aß in vitro. By contrast, LWDH-EE effectively delayed Aß induced paralysis in the transgenic C. elegans (CL4176) model which expresses human Aß1-42. Western blot revealed no treatment induced reduction in Aß accumulation in CL4176 although a significant reduction was observed at an early stage with respect to ß-amyloid deposition in C. elegans strain CL2006 which constitutively expresses human Aß1-42. In addition, LWDH-EE reduced in vivo reactive oxygen species (ROS) in C. elegans (CL4176) that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of amy1 in CL4176 while up-regulating hsp16.2 induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated ß-amyloid induced toxicity, in part, through up-regulation of heat shock protein, antioxidant activity and reduced ROS in C. elegans.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Medicamentos Herbarios Chinos/farmacología , Depuradores de Radicales Libres/farmacología , Fragmentos de Péptidos/toxicidad , Péptidos beta-Amiloides/química , Animales , Animales Modificados Genéticamente , Compuestos de Bifenilo/química , Caenorhabditis elegans/metabolismo , Química Farmacéutica , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Etanol/química , Depuradores de Radicales Libres/análisis , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Parálisis/inducido químicamente , Parálisis/tratamiento farmacológico , Fragmentos de Péptidos/química , Picratos/química , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Agua/química
13.
PLoS One ; 6(10): e26834, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046375

RESUMEN

Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral properties. We investigated the effect of foliar application of ι-, κ- and λ-carrageenans (representing various levels of sulphation) on Arabidopsis thaliana in resistance to the generalist insect Trichoplusia ni (cabbage looper) which is known to cause serious economic losses in crop plants. Plants treated with ι- and κ-carrageenan showed reduced leaf damage, whereas those treated with λ- carrageenan were similar to that of the control. In a no-choice test, larval weight was reduced by more than 20% in ι- and κ- carrageenan treatments, but unaffected by λ-carrageenan. In multiple choice tests, carrageenan treated plants attracted fewer T. ni larvae by the fourth day following infestation as compared to the control. The application of carrageenans did not affect oviposition behaviour of T. ni. Growth of T. ni feeding on an artificial diet amended with carrageenans was not different from that fed with untreated control diet. ι-carrageenan induced the expression of defense genes; PR1, PDF1.2, and TI1, but κ- and λ-carrageenans did not. Besides PR1, PDF1.2, and TI1, the indole glucosinolate biosynthesis genes CYP79B2, CYP83B1 and glucosinolate hydrolysing QTL, ESM1 were up-regulated by ι-carrageenan treatment at 48 h post infestation. Gas chromatography-mass spectrometry analysis of carrageenan treated leaves showed increased concentrations of both isothiocyanates and nitriles. Taken together, these results show that carrageenans have differential effects on Arabidopsis resistance to T. ni and that the degree of sulphation of the polysaccharide chain may well mediate this effect.


Asunto(s)
Arabidopsis/inmunología , Carragenina/farmacología , Mariposas Nocturnas/inmunología , Plantas/inmunología , Animales , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad/efectos de los fármacos , Inmunidad/genética , Rhodophyta , Algas Marinas
14.
BMC Res Notes ; 3: 126, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20444276

RESUMEN

BACKGROUND: RNA quality and quantity is sometimes unsuitable for cDNA library construction, from plant seeds rich in oil, polysaccharides and other secondary metabolites. Seeds of jatropha (Jatropha curcas L.) are rich in fatty acids/lipids, storage proteins, polysaccharides, and a number of other secondary metabolites that could either bind and/or co-precipitate with RNA, making it unsuitable for downstream applications. Existing RNA isolation methods and commercial kits often fail to deliver high-quality total RNA from immature jatropha seeds for poly(A)+ RNA purification and cDNA synthesis. FINDINGS: A protocol has been developed for isolating good quality total RNA from immature jatropha seeds, whereby a combination of the CTAB based RNA extraction method and a silica column of a commercial plant RNA extraction kit is used. The extraction time was reduced from two days to about 3 hours and the RNA was suitable for poly(A)+ RNA purification, cDNA synthesis, cDNA library construction, RT-PCR, and Northern hybridization. Based on sequence information from selected clones and amplified PCR product, the cDNA library seems to be a good source of full-length jatropha genes. The method was equally effective for isolating RNA from mustard and rice seeds. CONCLUSIONS: This is a simple CTAB + silica column method to extract high quality RNA from oil rich immature jatropha seeds that is suitable for several downstream applications. This method takes less time for RNA extraction and is equally effective for other tissues where the quality and quantity of RNA is highly interfered by the presence of fatty acids, polysaccharides and polyphenols.

15.
Theor Appl Genet ; 116(2): 155-63, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17924090

RESUMEN

Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating disease of rice (Oryza sativa L). Rice lines that carry resistance (R) gene Xa10 confer race-specific resistance to Xoo strains harboring avirulence (Avr) gene avrXa10. Here we report on genetic study, disease evaluation and fine genetic mapping of the Xa10 gene. The inheritance of Xa10-mediated resistance to PXO99A(pHM1avrXa10) did not follow typical Mendelian inheritance for single dominant gene in F2 population derived from IR24 x IRBB10. A locus might be present in IRBB10 that caused distorted segregation in F2 population. To eliminate this locus, an F3 population (F3-65) was identified, which showed normal Mendelian segregation ratio of 3:1 for resistance and susceptibility. A new near-isogenic line (F3-65-1743) of Xa10 in IR24 genetic background was developed and designated as IRBB10A. IRBB10A retained similar resistance specificity as that of IRBB10 and provided complete resistance to PXO99A(pHM1avrXa10) from seedling to adult stages. Linkage analysis using existing RFLP markers and F2 mapping population mapped the Xa10 locus to the proximal side of E1981S with genetic distance at 0.93 cM. With five new RFLP markers developed from the genomic sequence of Nipponbare, Xa10 was finely mapped at genetic distance of 0.28 cM between proximal marker M491 and distal marker M419 and co-segregated with markers S723 and M604. The physical distance between M491 and M419 on Nipponbare genome is 74 kb. Seven genes have been annotated from this 74-kb region and six of them are possible Xa10 candidates. The results of this study will be useful in Xa10 cloning and marker-assisted breeding.


Asunto(s)
Mapeo Cromosómico , Inmunidad Innata/genética , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Bacterianas/genética , Cruzamientos Genéticos , Cartilla de ADN/genética , Marcadores Genéticos/genética , Genética de Población , Polimorfismo de Longitud del Fragmento de Restricción , Transactivadores/genética , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA