Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 224: 10-20, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295893

RESUMEN

AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/análisis , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Espectroscopía de Resonancia Magnética/métodos
2.
Biophys J ; 122(6): 1058-1067, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36680343

RESUMEN

Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using 31P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. 2H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/metabolismo , Histidina/química , Australia , Membrana Dobles de Lípidos/química , Membrana Celular/metabolismo , Agua , Concentración de Iones de Hidrógeno
3.
J Am Chem Soc ; 144(19): 8536-8550, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35512333

RESUMEN

The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.


Asunto(s)
Proteínas de la Cápside , Ensamble de Virus , Arginina/metabolismo , Proteínas de la Cápside/química , Disulfuros/metabolismo , Virus de la Hepatitis B/metabolismo , Filogenia , ARN Viral/genética
4.
Biophys J ; 120(20): 4501-4511, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34480924

RESUMEN

The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.


Asunto(s)
Óxidos N-Cíclicos , Péptidos , Fosfolípidos , Marcadores de Spin
5.
Biochem Soc Trans ; 49(3): 1457-1465, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34156433

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aß peptide aggregates. The amyloid plaques and soluble oligomeric species of Aß are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aß interactions with model membranes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Amiloide/metabolismo , Encéfalo/patología , Humanos , Neuronas/metabolismo , Placa Amiloide/metabolismo , Unión Proteica , Sinapsis/metabolismo
6.
Amino Acids ; 53(5): 769-777, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33891157

RESUMEN

Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.


Asunto(s)
Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Animales , Anuros , Membrana Celular/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Membrana Dobles de Lípidos/química , Viabilidad Microbiana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
7.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34558564

RESUMEN

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Asunto(s)
Escherichia coli , Péptidos , Antibacterianos/farmacología , Membrana Dobles de Lípidos , Lípidos , Microscopía de Fuerza Atómica
8.
Chem Rev ; 119(13): 7721-7736, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244002

RESUMEN

The cholesterol-dependent cytolysins (CDCs) are a family of bacterial protein toxins specifically targeting eukaryotic cells through the absolute requirement for high concentrations of cholesterol in the target cells' lipid membrane. The soluble monomeric protein secreted by the bacteria oligomerizes on the surface of the target cell, and the complex formed then undergoes a concerted structural transition that results in the creation of a multimeric protein pore. Recognition of the cholesterol-rich membrane by CDCs is a surprisingly subtle process that takes place at the interface between the membrane and surrounding aqueous environment. The structure and composition of the lipid membrane modulates the efficiency with which the protein can identify cholesterol and alters the concentration of sterol required for membrane binding. Some of the details of the interplay between protein and membrane remain to be resolved, and in this review we present a current perspective on CDC pore formation, with particular focus on the role of the lipid bilayer and cholesterol accessibility.


Asunto(s)
Bacterias/química , Toxinas Bacterianas/química , Colesterol/química , Citotoxinas/química , Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Toxinas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Citotoxinas/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Factores de Virulencia/química , Factores de Virulencia/metabolismo
9.
J Pept Sci ; 27(8): e3330, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33843136

RESUMEN

Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.


Asunto(s)
Proteínas Anfibias/genética , Péptidos Catiónicos Antimicrobianos/genética , Proteínas Anfibias/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación
10.
FASEB J ; 33(10): 11021-11027, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31284743

RESUMEN

Antimicrobial peptides (AMPs) that target lipid membranes show promise as alternatives to conventional antibiotics. However, the molecular mechanisms of membrane perturbation, as most studies are performed in model systems and in-cell structural studies, have yet to be achieved. Solid-state NMR spectroscopy is a valuable technique to investigate peptide-membrane interactions and to determine the structure of peptides, but the short lifespan of bacteria, especially under magic angle spinning conditions, has not permitted in-cell structural studies. Here, we present the first dynamic nuclear polarization (DNP)-NMR in-cell studies of Escherichia coli bacteria incubated with the AMP maculatin 1.1 (Mac1) in combination with novel nitroxide spin-labeled peptides 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC)-[F3W]-Mac1 (MacW) and TOAC-TOAC-MacW. The in-cell 13C and 15N signal NMR enhancements, and 1H spin-lattice T1 relaxation times showed that TOAC-MacW and TOAC-TOAC-MacW performed better than the more hydrophilic biradical AMUPol used for DNP studies. Furthermore, the pores formed by the AMP increased the signal enhancements and decreased T1 values of specifically 13C- and 15N-labeled Mac1. This approach has a great potential for determining the first in situ structures of AMPs in bacteria.-Sani, M.-A., Zhu, S., Hofferek, V., Separovic, F. Nitroxide spin-labeled peptides for DNP-NMR in-cell studies.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Espectroscopía de Resonancia Magnética/métodos , Marcadores de Spin , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli , Óxidos de Nitrógeno/química
11.
Int J Mol Sci ; 20(1)2019 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-30621328

RESUMEN

In-cell NMR offers great insight into the characterization of the effect of toxins and antimicrobial peptides on intact cells. However, the complexity of intact live cells remains a significant challenge for the analysis of the effect these agents have on different cellular components. Here we show that 31P solid-state NMR can be used to quantitatively characterize the dynamic behaviour of DNA within intact live bacteria. Lipids were also identified and monitored, although 31P dynamic filtering methods indicated a range of dynamic states for phospholipid headgroups. We demonstrate the usefulness of this methodology for monitoring the activity of the antibiotic ampicillin and the antimicrobial peptide (AMP) maculatin 1.1 (Mac1.1) against Gram-negative bacteria. Perturbations in the dynamic behaviour of DNA were observed in treated cells, which indicated additional mechanisms of action for the AMP Mac1.1 not previously reported. This work highlights the value of 31P in-cell solid-state NMR as a tool for assessing the antimicrobial activity of antibiotics and AMPs in bacterial cells.


Asunto(s)
Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Fósforo/química , Estrés Fisiológico/efectos de los fármacos , Ampicilina/farmacología , ADN Bacteriano/metabolismo , Escherichia coli/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Ácidos Nucleicos/metabolismo , Temperatura
12.
Biochim Biophys Acta Biomembr ; 1860(2): 300-309, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29030245

RESUMEN

Antimicrobial peptides (AMPs) interact directly with bacterial membrane lipids. Thus, changes in the lipid composition of bacterial membranes can have profound effects on the activity of AMPs. In order to understand the effect of bilayer thickness and molecular order on the activity of AMPs, the interaction of maculatin 1.1 (Mac1.1) with phosphatidylcholine (PC) model membranes composed of different monounsaturated acyl chain lengths between 14 and 22 carbons was characterised by dual polarisation interferometry (DPI) and 31P and 1H solid-state NMR techniques. The thickness and bilayer order of each PC bilayer showed a linear dependence on the acyl chain length. The binding of Mac1.1 exhibited a biphasic dependency between the amount of bound Mac1.1 and bilayer thickness, whereby the mass of bound peptide increased from C14 to C16 and then decreased from C16 to C22. Significant perturbation of 31P chemical shift anisotropy (CSA) values was only observed for DOPC (C18) and DEPC (C22), respectively. In the case of DEPC, the greater range in CSA indicated different headgroup conformations or environments in the presence of Mac1.1. Overall, the results indicated that there is a significant change in the bilayer order upon binding of Mac1.1 and this change occurred in a co-operative manner at higher concentrations of Mac1.1 with increasing bilayer thickness and order. Overall, an optimum bilayer thickness and lipid order may be required for effective membrane perturbation by Mac1.1 and increasing the bilayer thickness and order may counteract the activity of Mac1.1 and play a role in antimicrobial resistance to AMPs.


Asunto(s)
Proteínas Anfibias/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/metabolismo , Secuencia de Aminoácidos , Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/química , Interferometría/métodos , Cinética , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Unión Proteica
13.
Biochim Biophys Acta Biomembr ; 1860(8): 1517-1527, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758185

RESUMEN

Linear antimicrobial peptides, with their rapid bactericidal mode of action, are well-suited for development as topical antibacterial drugs. We recently designed a synthetic linear 4-residue peptide, BRBR-NH2, with potent bactericidal activity against Staphylococcus aureus (MIC 6.25 µM), the main causative pathogen of human skin infections with an unknown mechanism of action. Herein, we describe a series of experiments conducted to gain further insights into its mechanism of action involving electron microscopy, artificial membrane dye leakage, solution- and solid-state NMR spectroscopy followed by molecular dynamics simulations. Experimental results point towards a SMART (Soft Membranes Adapt and Respond, also Transiently) mechanism of action, suggesting that the peptide can be developed as a topical antibacterial agent for treating drug-resistant Staphylococcus aureus infections.


Asunto(s)
Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Pared Celular/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Pared Celular/química , Liposomas/química , Liposomas/metabolismo , Espectroscopía de Resonancia Magnética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular
14.
Biochim Biophys Acta Biomembr ; 1860(6): 1282-1291, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29522705

RESUMEN

The Na+,K+-ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31P and 2H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations.


Asunto(s)
Membrana Celular/química , ATPasa Intercambiadora de Sodio-Potasio/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Polilisina/química , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Sus scrofa
15.
Chemistry ; 24(2): 286-291, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29068097

RESUMEN

The rise in antibiotic resistance has led to a renewed interest in antimicrobial peptides (AMPs) that target membranes. The mode of action of AMPs involves the disruption of the lipid bilayer and leads to growth inhibition and death of the bacteria. However, details at the molecular level of how these peptides kill bacteria and the reasons for the observed differences in selectivity remain unclear. Structural information is crucial for defining the molecular mechanism by which these peptides recognize, self-assemble and interact with a particular lipid membrane. Solid-state NMR is a non-invasive technique that allows the study of the structural details of lipid-peptide and peptide-peptide interactions. Following on from studies of antibiotic and lytic peptides, gramicidin A and melittin, respectively, we investigated maculatin 1.1, an AMP from the skin of Australian tree frogs that acts against Gram-positive bacteria. By using perdeuterated phospholipids and specifically labelled peptides, 2 H, 31 P and {31 P}15 N REDOR solid-state NMR experiments have been used to localize, maculatin 1.1 in neutral and anionic model membranes. However, the structure, location and activity depend on the composition of the model membrane and current advances in solid-state NMR spectroscopy now allow structure determination of AMPs in live bacteria.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Secuencia de Aminoácidos , Proteínas Anfibias/química , Animales , Anuros , Venenos de Abeja/química , Gramicidina/química , Humanos , Membrana Dobles de Lípidos/química , Meliteno/química , Micelas , Estructura Molecular , Fosfolípidos/química , Piel/química , Relación Estructura-Actividad
16.
Chemistry ; 24(53): 14220-14225, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-29979814

RESUMEN

Listeriolysin O (LLO) is a pore-forming toxin that enables survival and cell-to-cell spread of foodborne bacterial pathogen Listeria monocytogenes, which is responsible for the life-threatening disease, listeriosis. LLO-membrane interactions are crucial for pathogenicity of Listeria, but remained unexplained in detail at the molecular level. Here we addressed them by means of 2 H, 31 P, 13 C and 19 F solid-state NMR spectroscopy. Different fluid and ordered cholesterol-rich membrane lipid bilayer systems were prepared and checked for the integrity and properties in the presence of LLO. LLO has significantly changed dynamics of phospholipid acyl chains of more fluid cholesterol-rich bilayers, whereas the lipid bilayer organization was not affected. LLO has also affected cholesterol dynamics by increasing the intensity of low frequency motions, indicating direct interactions of LLO with cholesterol. Additionally, the LLO protein was shown to interact differently with lipid membranes, depending on the properties of cholesterol-rich membranes. The presented results, therefore, provide new insights into the interactions of the bacterial toxin LLO with cholesterol-rich membrane systems.

17.
Biophys J ; 112(4): 630-642, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28256223

RESUMEN

Cyclotides are ultra-stable cyclic disulfide-rich peptides from plants. Their biophysical effects and medically interesting activities are related to their membrane-binding properties, with particularly high affinity for phosphatidylethanolamine lipids. In this study we were interested in understanding the molecular details of cyclotide-membrane interactions, specifically with regard to the spatial orientation of the cyclotide kalata B1 from Oldenlandia affinis when embedded in a lipid bilayer. Our experimental approach was based on the use of solid-state 19F-NMR of oriented bilayers in conjunction with the conformationally restricted amino acid L-3-(trifluoromethyl)bicyclopent-[1.1.1]-1-ylglycine as an orientation-sensitive 19F-NMR probe. Its rigid connection to the kalata B1 backbone scaffold, together with the well-defined structure of the cyclotide, allowed us to calculate the protein alignment in the membrane directly from the orientation-sensitive 19F-NMR signal. The hydrophobic and polar residues on the surface of kalata B1 form well-separated patches, endowing this cyclotide with a pronounced amphipathicity. The peptide orientation, as determined by NMR, showed that this amphipathic structure matches the polar/apolar interface of the lipid bilayer very well. A location in the amphiphilic headgroup region of the bilayer was supported by 15N-NMR of uniformly labeled protein, and confirmed using solid-state 31P- and 2H-NMR. 31P-NMR relaxation data indicated a change in lipid headgroup dynamics induced by kalata B1. Changes in the 2H-NMR order parameter profile of the acyl chains suggest membrane thinning, as typically observed for amphiphilic peptides embedded near the polar/apolar bilayer interface. Furthermore, from the 19F-NMR analysis two important charged residues, E7 and R28, were found to be positioned equatorially. The observed location thus would be favorable for the postulated binding of E7 to phosphatidylethanolamine lipid headgroups. Furthermore, it may be speculated that this pair of side chains could promote oligomerization of kalata B1 through electrostatic intermolecular contacts via their complementary charges.


Asunto(s)
Ciclotidas/química , Ciclotidas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oldenlandia/metabolismo , Conformación Proteica
18.
Biochim Biophys Acta ; 1858(6): 1236-43, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26926423

RESUMEN

The increasing prevalence of antibiotic-resistant pathogens requires the development of new antibiotics. Proline-rich antimicrobial peptides (PrAMPs), including native apidaecins, Bac7, and oncocins or designed A3APO, show multi-modal actions against pathogens together with immunostimulatory activities. The interactions of the designed PrAMP, Chex1-Arg20, and its dimeric and tetrameric oligomers with different model membranes were investigated by circular dichroism spectroscopy, dynamic light scattering, zeta potential, differential scanning calorimetry, and dye leakage. Chex1-Arg20 oligomers showed stronger affinity and preferential binding to negatively charged phospholipid bilayers and led to lipid aggregation and neutralization. Fluorescence microscopy of negatively charged giant unilamellar vesicles with AlexFluor-647-labeled Chex1-Arg20 dimers and tetramers displayed aggregation at a peptide/lipid low ratio of 1:200 and at higher peptide concentrations (1:100/1:50) for Chex1-Arg20 monomer. Such interactions, aggregation, and neutralization of PrAMP oligomers additionally showed the importance of interactions of PrAMPs with negatively charged membranes.


Asunto(s)
Antiinfecciosos/metabolismo , Biopolímeros/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/química , Membrana Celular/metabolismo , Dicroismo Circular , Membrana Dobles de Lípidos , Potenciales de la Membrana , Microscopía Fluorescente , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Conformación Proteica
19.
Acc Chem Res ; 49(6): 1130-8, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27187572

RESUMEN

The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/química , Péptidos/química , Transporte de Proteínas
20.
Eur Biophys J ; 46(7): 639-646, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28478484

RESUMEN

Antimicrobial peptides (AMPs) may act by targeting the lipid membranes and disrupting the bilayer structure. In this study, three AMPs from the skin of Australian tree frogs, aurein 1.2, maculatin 1.1 and caerin 1.1, were investigated against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and vesicles that mimic their lipid compositions. Furthermore, equimolar mixtures of the peptides were tested to identify any synergistic interactions in antimicrobial activity. Minimum inhibition concentration and minimum bactericidal concentration assays showed significant activity against S. aureus but not against E. coli. Aurein was the least active while maculatin was the most active peptide and some synergistic effects were observed against S. aureus. Circular dichroism experiments showed that, in the presence of phospholipid vesicles, the peptides transitioned from an unstructured to a predominantly helical conformation (>50%), with greater helicity for POPG/TOCL compared to POPE/POPG vesicles. The helical content, however, was less in the presence of live E. coli and S. aureus, 25 and 5%, respectively. Equimolar concentrations of the peptides did not appear to form greater supramolecular structures. Dye release assays showed that aurein required greater concentration than caerin and maculatin to disrupt the lipid bilayers, and mixtures of the peptides did not cooperate to enhance their lytic activity. Overall, aurein, maculatin, and caerin showed moderate synergy in antimicrobial activity against S. aureus without becoming more structured or enhancement of their membrane-disrupting activity in phospholipid vesicles.


Asunto(s)
Proteínas Anfibias/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros , Secuencia de Aminoácidos , Proteínas Anfibias/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA