Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 30(16): 3353-67, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21772248

RESUMEN

The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I-III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function.


Asunto(s)
Cromosomas Fúngicos/fisiología , Histonas/fisiología , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Secuencia de Aminoácidos , Benomilo/farmacología , Centrómero/metabolismo , Centrómero/ultraestructura , Inestabilidad Cromosómica , Segregación Cromosómica , Farmacorresistencia Fúngica/genética , Histonas/genética , Microtúbulos/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Nocodazol/farmacología , Proteínas Nucleares/fisiología , Nucleosomas/efectos de los fármacos , Nucleosomas/ultraestructura , Mutación Puntual , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Tiabendazol/farmacología , Moduladores de Tubulina/farmacología
2.
Nature ; 446(7133): 338-41, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17293877

RESUMEN

CIA (CCG1-interacting factor A)/ASF1, which is the most conserved histone chaperone among the eukaryotes, was genetically identified as a factor for an anti-silencing function (Asf1) by yeast genetic screening. Shortly after that, the CIA-histone-H3-H4 complex was isolated from Drosophila as a histone chaperone CAF-1 stimulator. Human CIA-I/II (ASF1a/b) was identified as a histone chaperone that interacts with the bromodomain-an acetylated-histone-recognizing domain-of CCG1, in the general transcription initiation factor TFIID. Intensive studies have revealed that CIA/ASF1 mediates nucleosome assembly by forming a complex with another histone chaperone in human cells and yeast, and is involved in DNA replication, transcription, DNA repair and silencing/anti-silencing in yeast. CIA/ASF1 was shown as a major storage chaperone for soluble histones in proliferating human cells. Despite all these biochemical and biological functional analyses, the structure-function relationship of the nucleosome assembly/disassembly activity of CIA/ASF1 has remained elusive. Here we report the crystal structure, at 2.7 A resolution, of CIA-I in complex with histones H3 and H4. The structure shows the histone H3-H4 dimer's mutually exclusive interactions with another histone H3-H4 dimer and CIA-I. The carboxy-terminal beta-strand of histone H4 changes its partner from the beta-strand in histone H2A to that of CIA-I through large conformational change. In vitro functional analysis demonstrated that CIA-I has a histone H3-H4 tetramer-disrupting activity. Mutants with weak histone H3-H4 dimer binding activity showed critical functional effects on cellular processes related to transcription. The histone H3-H4 tetramer-disrupting activity of CIA/ASF1 and the crystal structure of the CIA/ASF1-histone-H3-H4 dimer complex should give insights into mechanisms of both nucleosome assembly/disassembly and nucleosome semi-conservative replication.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Xenopus laevis
3.
Proc Natl Acad Sci U S A ; 107(18): 8153-8, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20393127

RESUMEN

Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).


Asunto(s)
Proteínas de Ciclo Celular/química , Histonas/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Histonas/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
4.
Genes Cells ; 14(7): 789-806, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19523169

RESUMEN

A rapid increase in research on the relationship between histone modifications and their subsequent reactions in the nucleus has revealed that the histone modification system is complex, and robust against point mutations. The prevailing theoretical framework (the histone code hypothesis) is inadequate to explain either the complexity or robustness, making the formulation of a new theoretical framework both necessary and desirable. Here, we develop a model of the regulatory network of histone modifications in which we encode histone modifications as nodes and regulatory interactions between histone modifications as links. This network has scale-free properties and subnetworks with a pseudo-mirror symmetry structure, which supports the robustness of the histone modification network. In addition, we show that the unstructured tail regions of histones are suitable for the acquisition of this scale-free property. Our model and related insights provide the first framework for an overall architecture of a histone modification network system, particularly with regard to the structural and functional roles of the unstructured histone tail region. In general, the post-translational "modification webs" of natively unfolded regions (proteins) may function as signal routers for the robust processing of the large amounts of signaling information.


Asunto(s)
Histonas/química , Histonas/metabolismo , Modelos Biológicos , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
5.
J Mol Biol ; 378(5): 987-1001, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18407291

RESUMEN

Chromodomains are methylated histone binding modules that have been widely studied. Interestingly, some chromodomains are reported to bind to RNA and/or DNA, although the molecular basis of their RNA/DNA interactions has not been solved. Here we propose a novel binding mode for chromodomain-RNA interactions. Essential Sas-related acetyltransferase 1 (Esa1) contains a presumed chromodomain in addition to a histone acetyltransferase domain. We initially determined the solution structure of the Esa1 presumed chromodomain and showed it to consist of a well-folded structure containing a five-stranded beta-barrel similar to the tudor domain rather than the canonical chromodomain. Furthermore, the domain showed no RNA/DNA binding ability. Because the N-terminus of the protein forms a helical turn, we prepared an N-terminally extended construct, which we surprisingly found to bind to poly(U) and to be critical for in vivo function. This extended protein contains an additional beta-sheet that acts as a knot for the tudor domain and binds to oligo(U) and oligo(C) with greater affinity compared with other oligo-RNAs and DNAs examined thus far. The knot does not cause a global change in the core structure but induces a well-defined loop in the tudor domain itself, which is responsible for RNA binding. We made 47 point mutants in an esa1 mutant gene in yeast in which amino acids of the Esa1 knotted tudor domain were substituted to alanine residues and their functional abilities were examined. Interestingly, the knotted tudor domain mutations that were lethal to the yeast lost poly(U) binding ability. Amino acids that are related to RNA interaction sites, as revealed by both NMR and affinity binding experiments, are found to be important in vivo. These findings are the first demonstration of how the novel structure of the knotted tudor domain impacts on RNA binding and how this influences in vivo function.


Asunto(s)
Acetiltransferasas/química , Conformación Proteica , Proteínas de Unión al ARN/química , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genes Cells ; 12(1): 13-33, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17212652

RESUMEN

The core histones are essential components of the nucleosome that act as global negative regulators of DNA-mediated reactions including transcription, DNA replication and DNA repair. Modified residues in the N-terminal tails are well characterized in transcription, but not in DNA replication and DNA repair. In addition, roles of residues in the core globular domains are not yet well characterized in any DNA-mediated reactions. To comprehensively understand the functional surface(s) of a core histone, we constructed 320 yeast mutant strains, each of which has a point mutation in a core histone, and identified 42 residues responsible for the suppressor of Ty (Spt(-)) phenotypes, and 8, 30 and 61 residues for sensitivities to 6-azauracil (6AU), hydroxyurea (HU) and methyl-methanesulfonate (MMS), respectively. In addition to residues that affect one specific assay, residues involved in multiple reactions were found, and surprisingly, about half of them were clustered at either the nucleosome entry site, the surface required for nucleosome-nucleosome interactions in crystal packing or their surroundings. This comprehensive mutation approach was proved to be powerful for identification of the functional surfaces of a core histone in a variety of DNA-mediated reactions and could be an effective strategy for characterizing other evolutionarily conserved hub-like factors for which surface structural information is available.


Asunto(s)
Histonas/química , Histonas/genética , Mutación Puntual , Secuencia de Aminoácidos , Histonas/metabolismo , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Mutágenos/farmacología , Nucleosomas/genética , Nucleosomas/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uracilo/análogos & derivados , Uracilo/farmacología
7.
Brief Funct Genomic Proteomic ; 5(3): 190-208, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16980317

RESUMEN

Eukaryotic DNA is packaged into chromatin by histone proteins, which assemble the DNA into an organized, higher-order structure. The precise organization of chromatin is essential for faithful execution of DNA-mediated reactions such as transcription, DNA replication, DNA repair and DNA recombination. The organization of chromatin is considered to be regulated by a variety of post-translational modifications of histones, such as acetylation, methylation, phosphorylation, ubiquitination, SUMOylation and poly-ADP-ribosylation. The relationship between histone acetylation and gene expression was first observed in 1964. Since then, a great deal of evidence has accumulated showing that not only transcription but other DNA-mediated reactions also are regulated by histone acetylation. With regard to the putative mechanism(s) by which histone acetylation regulates the flow of genetic information, site-specific modification and recognition of acetylated histone/DNA complexes have been postulated. Elucidation of the downstream effects of histone modification, as well as the identification, isolation and characterization of the relevant factors involved, have aided in our understanding of the mechanisms of regulation of DNA activity by histones. Currently, state-of-the-art technologies that enable genome-wide analysis are allowing insight into a critical and interesting question in eukaryotic transcription: are the principles that govern transcription of individual gene loci applicable to the genome as a whole? Here, we review the recent progress on histone modifications, with an emphasis on the role of histone acetylation in gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Acetilación , Animales , Sitios de Unión , Cromatina , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Humanos , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA