RESUMEN
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.
Asunto(s)
Cápside , Núcleo Celular , ADN Viral , VIH-1 , Integración Viral , Factores de Escisión y Poliadenilación de ARNm , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/química , VIH-1/genética , VIH-1/metabolismo , Humanos , Cápside/metabolismo , Cápside/química , ADN Viral/metabolismo , ADN Viral/genética , Núcleo Celular/metabolismo , Dominios Proteicos , Unión Proteica , Células HEK293 , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Células HeLa , Separación de FasesRESUMEN
In vitro screening of large compound libraries with automated high-throughput screening is expensive and time-consuming and requires dedicated infrastructures. Conversely, the selection of DNA-encoded chemical libraries (DECLs) can be rapidly performed with routine equipment available in most laboratories. In this study, we identified novel inhibitors of SARS-CoV-2 main protease (Mpro) through the affinity-based selection of the DELopen library (open access for academics), containing 4.2 billion compounds. The identified inhibitors were peptide-like compounds containing an N-terminal electrophilic group able to form a covalent bond with the nucleophilic Cys145 of Mpro, as confirmed by x-ray crystallography. This DECL selection campaign enabled the discovery of the unoptimized compound SLL11 (IC50 = 30 nM), proving that the rapid exploration of large chemical spaces enabled by DECL technology allows for the direct identification of potent inhibitors avoiding several rounds of iterative medicinal chemistry. As demonstrated further by x-ray crystallography, SLL11 was found to adopt a highly unique U-shaped binding conformation, which allows the N-terminal electrophilic group to loop back to the S1' subsite while the C-terminal amino acid sits in the S1 subsite. MP1, a close analog of SLL11, showed antiviral activity against SARS-CoV-2 in the low micromolar range when tested in Caco-2 and Calu-3 (EC50 = 2.3 µM) cell lines. As peptide-like compounds can suffer from low cell permeability and metabolic stability, the cyclization of the compounds will be explored in the future to improve their antiviral activity.
Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Humanos , Cristalografía por Rayos X , Antivirales/farmacología , Antivirales/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Tratamiento Farmacológico de COVID-19 , Células CACO-2RESUMEN
IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Asunto(s)
Coinfección , Regulación Viral de la Expresión Génica , Duplicado del Terminal Largo de VIH , VIH-1 , VIH-2 , Interferones , ARN Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Coinfección/inmunología , Coinfección/virología , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , VIH-1/inmunología , VIH-2/genética , VIH-2/inmunología , VIH-2/metabolismo , ARN Viral/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Interferones/inmunología , Regiones Promotoras Genéticas/genética , Unión Competitiva , ARN Polimerasa II/metabolismo , Transcripción GenéticaRESUMEN
Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.
Asunto(s)
COVID-19 , Fibrosis Quística , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Gravedad del Paciente , SARS-CoV-2RESUMEN
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into â¼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Asunto(s)
Aptámeros de Nucleótidos , VIH-1 , Aptámeros de Nucleótidos/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , VIH-1/metabolismo , Replicación Viral/genéticaRESUMEN
HIV-1 capsid protein (CA) is the molecular target of the recently FDA-approved long acting injectable (LAI) drug lenacapavir (GS-6207). The quick emergence of CA mutations resistant to GS-6207 necessitates the design and synthesis of novel sub-chemotypes. We have conducted the structure-based design of two new sub-chemotypes combining the scaffold of GS-6207 and the N-terminal cap of PF74 analogs, the other important CA-targeting chemotype. The design was validated via induced-fit molecular docking. More importantly, we have worked out a general synthetic route to allow the modular synthesis of novel GS-6207 subtypes. Significantly, the desired stereochemistry of the skeleton C2 was confirmed via an X-ray crystal structure of the key synthetic intermediate 22a. Although the newly synthesized analogs did not show significant potency, our efforts herein will facilitate the future design and synthesis of novel subtypes with improved potency.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Proteínas de la Cápside/genética , VIH-1/genética , Simulación del Acoplamiento Molecular , Fármacos Anti-VIH/farmacología , MutaciónRESUMEN
In the realm of high-throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post-screening. Our innovation introduces a tag-free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity-enhancing derivatization method, utilized in tandem with nano LC-MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.
Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas en TándemRESUMEN
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Asunto(s)
Fármacos Anti-VIH/química , Infecciones por VIH/tratamiento farmacológico , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/química , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Diseño de Fármacos , Farmacorresistencia Viral , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Transducción de Señal , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacosRESUMEN
BACKGROUND: In vitro selection experiments identified viruses resistant to integrase strand transfer inhibitors (INSTIs) carrying mutations in the G-tract (six guanosines) of the 3'-polypurine tract (3'-PPT). A clinical study also reported that mutations in the 3'-PPT were observed in a patient receiving dolutegravir monotherapy. However, recombinant viruses with the 3'-PPT mutations that were found in the clinical study were recently shown to be susceptible to INSTIs. OBJECTIVES: To identify the specific mutation(s) in the G-tract of the 3'-PPT for acquiring INSTI resistance, we constructed infectious clones bearing single or multiple mutations and systematically characterized the susceptibility of these clones to both first- and second-generation INSTIs. METHODS: The infectious clones were tested for their infectivity and susceptibility to INSTIs in a single-cycle assay using TZM-bl cells. RESULTS: A single mutation of thymidine (T) at the fifth position (GGG GTG) in the G-tract of the 3'-PPT had no effect on INSTI resistance. A double mutation, cytidine (C) or 'T' at the second position and 'T' at the fifth position (GCG GTG and GTG GTG), increased resistance to INSTIs, with the appearance of a plateau in the maximal percentage inhibition (MPI) of the dose-response curves, consistent with a non-competitive mechanism of inhibition. CONCLUSIONS: Mutations at the second and fifth positions in the G-tract of the 3'-PPT may result in complex resistance mechanism(s), rather than simply affecting INSTI binding at the IN active site.
Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Humanos , MutaciónRESUMEN
We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between - 6 and - 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Solventes , Flujo de TrabajoRESUMEN
Since early 2020, disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic, causing millions of infections and deaths worldwide. Despite rapid deployment of effective vaccines, it is apparent that the global community lacks multipronged interventions to combat viral infection and disease. A major limitation is the paucity of antiviral drug options representing diverse molecular scaffolds and mechanisms of action. Here we report the antiviral activities of three distinct marine natural productsâhomofascaplysin A (1), (+)-aureol (2), and bromophycolide A (3)âevidenced by their ability to inhibit SARS-CoV-2 replication at concentrations that are nontoxic toward human airway epithelial cells. These compounds stand as promising candidates for further exploration toward the discovery of novel drug leads against SARS-CoV-2.
Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Productos Biológicos/farmacología , Células Epiteliales , Humanos , SARS-CoV-2RESUMEN
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Antirretrovirales , Cápside , Proteínas de la Cápside/genéticaRESUMEN
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against wild-type (WT) and drug-resistant HIV-1 in phase III clinical trials. EFdA resistance is not well characterized. To study EFdA resistance patterns that may emerge in naive or tenofovir (TFV)-, emtricitabine/lamivudine (FTC/3TC)-, or zidovudine (AZT)-treated patients, we performed viral passaging experiments starting with WT, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless of the starting viral sequence, all selected EFdA-resistant variants included the M184V reverse transcriptase (RT) mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (â¼24-fold) than either M184V (â¼8-fold) or A114S alone (â¼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than was WT HIV-1. These mutants also had significantly lower specific infectivities than did WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT versus A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data suggest that EFdA is an excellent therapeutic candidate for naive, AZT-, FTC/3TC-, and especially tenofovir-treated patients.
Asunto(s)
VIH-1 , Inhibidores de la Transcriptasa Inversa , Desoxiadenosinas/farmacología , VIH-1/genética , Humanos , Lamivudine , Inhibidores de la Transcriptasa Inversa/farmacologíaRESUMEN
Human immunodeficiency virus (HIV) reverse transcriptase (RT) contains two distinct functional domains: a DNA polymerase (pol) domain and a ribonuclease H (RNase H) domain, both of which are required for viral genome replication. Over the last 3 decades, RT has been at the forefront of HIV drug discovery efforts with numerous nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) approved by the FDA. However, all these RT inhibitors target only the pol function, and inhibitors of RT-associated RNase H have yet to enter the development pipeline, which in itself manifests both the opportunity and challenges of targeting RNase H: if developed, RT RNase H inhibitors would represent a mechanistically novel class of HIV drugs that can be particularly valuable in treating HIV strains resistant to current drugs. The challenges include (1) the difficulty in selectively targeting RT RNase H over RT pol due to their close interplay both spatially and temporally and over HIV-1 integrase strand transfer (INST) activity because of their active site similarities; (2) to a larger extent, the inability of active site inhibitors to confer significant antiviral effect, presumably due to a steep substrate barrier by which the pre-existing substrate prevents access of small molecules to the active site. As a result, previously reported RT RNase H inhibitors typically lacked target specificity and significant antiviral potency. Achieving meaningful antiviral activity via active site targeting likely entails selective and ultrapotent RNase H inhibition to allow small molecules to cut into the dominance of substrates. Based on a pharmacophore model informed by prior work, we designed and redesigned a few metal-chelating chemotypes, such as 2-hydroxyisoquinolinedione (HID), hydroxypyridonecarboxylic acid (HPCA), 3-hydroxypyrimidine-2,4-dione (HPD), and N-hydroxythienopyrimidine-2,4-dione (HTPD). Analogues of these chemotypes generally exhibited improved potency and selectivity inhibiting RT RNase H over the best previous compounds and further validated the pharmacophore model. Extended structure-activity relationship (SAR) on the HPD inhibitor type by mainly altering the linkage generated a few subtypes showing exceptional potency (single-digit nanomolar) and excellent selectivity over the inhibition of RT pol and INST. In parallel, a structure-based approach also allowed us to design a unique double-winged HPD subtype to potently and selectively inhibit RT RNase H and effectively compete against the RNA/DNA substrate. Significantly, all potent HPD subtypes consistently inhibited HIV-1 in the cell culture, suggesting that carefully designed active site RNase H inhibitors with ultrapotency could partially overcome the barrier to antiviral phenotype. Overall, in addition to identifying our own inhibitor types, our medicinal chemistry efforts demonstrated the value of pharmacophore and structure-based approaches in designing active side-directed RNase H inhibitors and could provide a viable path to validating RNase H as a novel antiviral target.
Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.
Asunto(s)
Hepacivirus/fisiología , Hepatitis C/prevención & control , Interacciones Huésped-Patógeno , ARN Helicasas/metabolismo , Replicación Viral , Hepacivirus/aislamiento & purificación , Hepatitis C/patología , Hepatitis C/virología , Humanos , ARN Helicasas/genéticaRESUMEN
We designed, synthesized, and characterized a novel nucleoside analog, (1S,3S,5S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-5-hydroxy-1-(hydroxymethyl)-2-methylene-cyclopentanecarbonitrile, or 4'-cyano-methylenecarbocyclic-2'-deoxyguanosine (CMCdG), and evaluated its anti-hepatitis B virus (anti-HBV) activity, safety, and related features. CMCdG's in vitro activity was determined using quantitative PCR and Southern blotting assays, and its cytotoxicity was determined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, while its in vivo activity and safety were determined in human liver-chimeric mice infected with wild-type HBV genotype Ce (HBVWTCe) and an entecavir (ETV)-resistant HBV variant containing the amino acid substitutions L180M, S202G, and M204V (HBVETV-RL180M/S202G/M204V). CMCdG potently inhibited HBV production in HepG2.2.15 cells (50% inhibitory concentration [IC50], â¼30 nM) and HBVWTCe plasmid-transfected Huh7 cells (IC50, 206 nM) and efficiently suppressed ETV-resistant HBVETV-RL180M/S202G/M204V (IC50, 2,657 nM), while it showed no or little cytotoxicity (50% cytotoxic concentration, >500 µM in most hepatocytic cells examined). Two-week peroral administration of CMCdG (1 mg/kg of body weight/day once a day [q.d.]) to HBVWTCe-infected human liver-chimeric mice reduced the level of viremia by â¼2 logs. CMCdG also reduced the level of HBVETV-RL180M/S202G/M204V viremia by â¼1 log in HBVETV-RL180M/S202G/M204V-infected human liver-chimeric mice, while ETV (1 mg/kg/day q.d.) completely failed to reduce the viremia. None of the CMCdG-treated mice had significant drug-related changes in body weights or serum human albumin levels. Structural analyses using homology modeling, semiempirical quantum methods, and molecular dynamics revealed that although ETV triphosphate (TP) forms good van der Waals contacts with L180 and M204 of HBVWTCe reverse transcriptase (RT), its contacts with the M180 substitution are totally lost in the HBVETV-RL180M/S202G/M204V RT complex. However, CMCdG-TP retains good contacts with both the HBVWTCe RT and HBVETV-RL180M/S202G/M204V RT complexes. The present data warrant further studies toward the development of CMCdG as a potential therapeutic for patients infected with drug-resistant HBV and shed light on the further development of more potent and safer anti-HBV agents.
Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Nucleósidos/farmacología , Purinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Animales , Antivirales/efectos adversos , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Viral , Guanina/análogos & derivados , Guanina/farmacología , Células Hep G2 , Humanos , Ratones , Nucleósidos/efectos adversos , Purinas/efectos adversos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Albúmina Sérica/análisisRESUMEN
Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.
Asunto(s)
Virus de la Fiebre Aftosa/enzimología , Mutagénesis , ARN Polimerasa Dependiente del ARN/metabolismo , Sustitución de Aminoácidos , Animales , Antivirales/metabolismo , Línea Celular , Cricetinae , Cristalografía por Rayos X , Señales de Localización Nuclear , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Ribavirina/metabolismoRESUMEN
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is the most potent nucleoside analog inhibitor of HIV reverse transcriptase (RT). It retains a 3'-OH yet acts as a chain-terminating agent by diminishing translocation from the pretranslocation nucleotide-binding site (N site) to the posttranslocation primer-binding site (P site). Also, facile misincorporation of EFdA-monophosphate (MP) results in difficult-to-extend mismatched primers. To understand the high potency and unusual inhibition mechanism of EFdA, we solved RT crystal structures (resolutions from 2.4 to 2.9 Å) that include inhibition intermediates (i) before inhibitor incorporation (catalytic complex, RT/DNA/EFdA-triphosphate), (ii) after incorporation of EFdA-MP followed by dT-MP (RT/DNAEFdA-MP(P)⢠dT-MP(N) ), or (iii) after incorporation of two EFdA-MPs (RT/DNAEFdA-MP(P)⢠EFdA-MP(N) ); (iv) the latter was also solved with EFdA-MP mismatched at the N site (RT/DNAEFdA-MP(P)⢠EFdA-MP(*N) ). We report that the inhibition mechanism and potency of EFdA stem from interactions of its 4'-ethynyl at a previously unexploited conserved hydrophobic pocket in the polymerase active site. The high resolution of the catalytic complex structure revealed a network of ordered water molecules at the polymerase active site that stabilize enzyme interactions with nucleotide and DNA substrates. Finally, decreased translocation results from favorable interactions of primer-terminating EFdA-MP at the pretranslocation site and unfavorable posttranslocation interactions that lead to observed localized primer distortions.
Asunto(s)
Fármacos Anti-VIH/farmacología , Desoxiadenosinas/farmacología , Transcriptasa Inversa del VIH/química , Inhibidores de la Transcriptasa Inversa/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de EnzimasRESUMEN
The viral restriction factor SERINC5 inhibits HIV-1 infection via unknown mechanisms. Sood and co-workers now show that SERINC5 suppresses HIV-1 fusogenicity and increases sensitivity to neutralizing antibodies by perturbing the folding of the fusion machinery. This work advances our understanding of host-virus interactions and provides a compelling case for considering the host immune system in studies of restriction factor mechanisms.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Proteínas de la Membrana/inmunología , Pliegue de Proteína , Internalización del Virus , HumanosRESUMEN
Objectives: 4'-Ethnyl-2'-fluoro-2'-deoxyadenosine (EFdA) is a novel translocation-defective reverse transcriptase inhibitor. We investigated the virological and biochemical inhibitory potentials of EFdA against a broad spectrum of subtype-specific chimeric viruses and compared it with tenofovir alafenamide, nevirapine, efavirenz, rilpivirine and etravirine. Methods: pNL4.3 chimeric viruses encoding gag-pol from treatment-naive patients (n = 24) and therapy-failure patients (n = 3) and a panel of reverse transcriptase inhibitor-resistant strains (n = 7) were used to compare the potency of reverse transcriptase inhibitor drugs. The phenotypic drug susceptibility assay was performed using TZM-bl cells. In vitro inhibition assays were done using patient-derived reverse transcriptase. IC50 values of NNRTIs were calculated using a PicoGreen-based spectrophotometric assay. Steady-state kinetics were used to determine the apparent binding affinity (Km.dNTP) of triphosphate form of EFdA (EFdA-TP) and dATP. Results: Among the chimeric treatment-naive viruses, EFdA had an ex vivo antiretroviral activity [median (IQR) EC50 = 1.4 nM (0.6-2.1 nM)] comparable to that of tenofovir alafenamide [1.6 nM (0.5-3.6 nM)]. Subtype-specific differences were found for etravirine (P = 0.004) and rilpivirine (P = 0.017), where HIV-1C had the highest EC50 values. EFdA had a greater comparative efficiency [calculated by dividing the efficiency of monophosphate form of EFdA (EFdA-MP) incorporation (kcat.EFdA-TP/Km.EFdA-TP) over the efficiency of dATP incorporation (kcat.dATP/Km.dATP)] compared with the natural substrate dATP, with a fold change of between 1.6 and 3.2. Ex vivo analysis on reverse transcriptase inhibitor-resistant strains showed EFdA to have a higher potency. Despite the presence of rilpivirine DRMs, some non-B strains showed hypersusceptibility to rilpivirine. Conclusions: Our combined virological and biochemical data suggest that EFdA inhibits both WT and reverse transcriptase inhibitor-resistant viruses efficiently in a subtype-independent manner. In contrast, HIV-1C is least susceptible to etravirine and rilpivirine.