Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Indoor Air ; 30(1): 76-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593610

RESUMEN

The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices' characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings' structural characteristic or occupants' activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Lugar de Trabajo/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Aldehídos/análisis , Europa (Continente) , Modelos Lineales , Compuestos Orgánicos Volátiles/análisis
2.
Environ Monit Assess ; 167(1-4): 321-31, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19572108

RESUMEN

During the last decades, the air quality of the city of Athens has been quite aggravated. Scientific interest has been focused on health effects caused by both outdoor and indoor air pollution. The purpose of this study was the presentation of results from air quality measurements in two similar typical Athenian apartments in the same suburban area. In addition, smoking contribution is investigated, as it is the main factor which differentiates the two apartments. The results showed that it is the outdoor environment that mainly contributes to the air quality of the non-smokers' house. In the second apartment, PM2.5, PM1, and benzene concentrations were found significantly higher due to smoking activity. In contrast, no clear difference in particulate matter ionic composition between the two areas was observed, although in the smoker's house, ion concentrations were found elevated. This observation amplifies the assumption that in the smoker's apartment, significant outdoor sources' contribution cannot be excluded.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Fumar/efectos adversos , Grecia
3.
Sci Total Environ ; 650(Pt 2): 2337-2354, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30292125

RESUMEN

This paper aims to identify the chemical fingerprints of potential PM2.5 sources and estimate their contribution to Thessaloniki port-city's air quality. For this scope, Positive Matrix Factorization model was applied on a comprehensive PM2.5 dataset collected over a one-year period, at two sampling sites: the port and the city center. The model indicated six and five (groups of) sources contributing to particle concentration at the two sites, respectively. Traffic and biomass burning (winter months) comprise the major local PM sources for Thessaloniki (their combined contribution can exceed 70%), revealing two of the major control-demanding problems of the city. Shipping and in-port emissions have a non-negligible impact (average contribution to PM2.5: 9-13%) on both primary and secondary particles. Road dust factor presents different profile and contribution at the two sites (19.7% at the port; 7.4% at the city center). The secondary-particle factor represents not only the aerosol transportation over relatively long distances, but also a part of traffic-related pollution (14% at the port; 34% at the city center). The study aims to contribute to the principal role of quantitative information on emission sources (source apportionment) in port-cities for the implementation of the air quality directives and guidelines for public health.

4.
Sci Total Environ ; 587-588: 59-67, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28228238

RESUMEN

In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors.

5.
Artículo en Inglés | MEDLINE | ID: mdl-27120608

RESUMEN

Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.


Asunto(s)
Ambiente Controlado , Lugar de Trabajo/psicología , Adulto , Contaminación del Aire Interior , Eficiencia , Emociones , Ambiente , Etnicidad , Europa (Continente) , Femenino , Finlandia , Francia , Grecia , Humanos , Hungría , Italia , Masculino , Persona de Mediana Edad , Países Bajos , Percepción , Satisfacción Personal , Portugal , España , Encuestas y Cuestionarios , Lugar de Trabajo/estadística & datos numéricos
6.
Environ Int ; 92-93: 324-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27128717

RESUMEN

In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated. The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OP(AA) m(-3) and OP(GSH) m(-3) (% antioxidant depletion/m(3) air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OP(AA) m(-3) and OP(GSH) m(-3) with higher mean values during winter. The indoor/outdoor OP(AA) m(-3) and OP(GSH) m(-3) ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Europa (Continente) , Tamaño de la Partícula , Estaciones del Año , Oligoelementos/análisis
7.
Environ Sci Pollut Res Int ; 22(9): 6812-26, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25430014

RESUMEN

The chemical characterization of particulate matter (PM) 2.5 fraction was studied during a 1-year sampling campaign conducted at a site near Thessaloniki's port area. PM2.5 collected samples were chemically analyzed for polycyclic aromatic hydrocarbons, minerals, and trace elements (Pb, Ni, Cu, V, Mn, Cr, Zn, Mg, K, Ti, Fe, Ca, and Al); water-soluble ions (Cl(-), NO3 (-), SO4 (2-), K(+), Na(+), NH4 (+), Mg(2+), Ca(2+)); and organic and elemental carbon. The average annual PM2.5 concentration (66.0 µg/m(3)) was at the highest level compared with other studies reported for the same city but different sampling sites. The average daily sum of the measured concentration of polycyclic aromatic hydrocarbons (PAHs) was 12.76 ng/m(3); this value decreased to 6.73 ng/m(3) for the warm period and reached the value of 19.8 ng/m(3) for the cold period. The average concentration of benzo[a]pyrene during the sampling period was 0.75 ng/m(3), which is below the European Union limit value of 1.0 ng/m(3). The ionic content comprised, on average, 22.6 % of the PM2.5 mass, with sulfate and ammonium being the most abundant species (31 and 26 %, respectively, of measured ions during the whole sampling period). The annual mean concentrations of organic carbon (OC) and elemental carbon (EC) were 10.5 ± 6.3 and 2.3 ± 1.5 µg/m(3), respectively. The OC/EC ratio ranged from 1.6 to 9.9, suggesting that there is a significant influence of residential wood burning for heating as well as ship and vehicle emissions to the sampling area. Finally, the elemental composition of associated PM2.5 was dominated by Ca, Fe, and Al. Although conclusions based only on PM2.5 measurements cannot entirely estimate all harbor sources' contribution, there is evidence to support that port activities affect the city's air quality and vice versa.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Ciudades , Monitoreo del Ambiente , Grecia , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA