RESUMEN
We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). ATF6 then induces mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER-resident protein with no known structural homologs and unclear ER function. To determine MANF's function in the heart in vivo, here we developed a cardiomyocyte-specific MANF-knockdown mouse model. MANF knockdown increased cardiac damage after I/R, which was reversed by AAV9-mediated ectopic MANF expression. Mechanistically, MANF knockdown in cultured neonatal rat ventricular myocytes (NRVMs) impaired protein folding in the ER and cardiomyocyte viability during simulated I/R. However, this was not due to MANF-mediated protection from reactive oxygen species generated during reperfusion. Because I/R impairs oxygen-dependent ER protein disulfide formation and such impairment can be caused by reductive stress in the ER, we examined the effects of the reductive ER stressor DTT. MANF knockdown in NRVMs increased cell death from DTT-mediated reductive ER stress, but not from nonreductive ER stresses caused by thapsigargin-mediated ER Ca2+ depletion or tunicamycin-mediated inhibition of ER protein glycosylation. In vitro, recombinant MANF exhibited chaperone activity that depended on its conserved cysteine residues. Moreover, in cells, MANF bound to a model ER protein exhibiting improper disulfide bond formation during reductive ER stress but did not bind to this protein during nonreductive ER stress. We conclude that MANF is an ER chaperone that enhances protein folding and myocyte viability during reductive ER stress.
Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Supervivencia Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Glicosilación , Células HeLa , Humanos , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/patología , Factores de Crecimiento Nervioso/genética , Especies Reactivas de OxígenoRESUMEN
RATIONALE: Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. OBJECTIVE: To examine the activity and function of ATF6 during cardiac hypertrophy. METHODS AND RESULTS: We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine- and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9- RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. CONCLUSIONS: Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Hipertrofia Ventricular Izquierda/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/enzimología , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Activación Transcripcional , Función Ventricular Izquierda , Remodelación Ventricular , Factor de Transcripción Activador 6/deficiencia , Factor de Transcripción Activador 6/genética , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Retículo Endoplásmico/enzimología , Estrés del Retículo Endoplásmico , Predisposición Genética a la Enfermedad , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Pliegue de Proteína , Proteostasis , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Transducción de SeñalRESUMEN
The isolation and culturing of cardiac myocytes from mice has been essential for furthering the understanding of cardiac physiology and pathophysiology. While isolating myocytes from neonatal mouse hearts is relatively straightforward, myocytes from the adult murine heart are preferred. This is because compared to neonatal cells, adult myocytes more accurately recapitulate cell function as it occurs in the adult heart in vivo. However, it is technically difficult to isolate adult mouse cardiac myocytes in the necessary quantities and viability, which contributes to an experimental impasse. Furthermore, published procedures are specific for the isolation of either atrial or ventricular myocytes at the expense of atrial and ventricular non-myocyte cells. Described here is a detailed method for isolating both atrial and ventricular cardiac myocytes, along with atrial and ventricular non-myocytes, simultaneously from a single mouse heart. Also provided are the details for optimal cell-specific culturing methods, which enhance cell viability and function. This protocol aims not only to expedite the process of adult murine cardiac cell isolation, but also to increase the yield and viability of cells for investigations of atrial and ventricular cardiac cells.