Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Endocrinol (Oxf) ; 100(4): 317-327, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38229583

RESUMEN

OBJECTIVE: Endocrine systems are disrupted in acute illness, and symptoms reported following coronavirus disease 2019 (COVID-19) are similar to those found with clinical hormone deficiencies. We hypothesised that people with severe acute COVID-19 and with post-COVID symptoms have glucocorticoid and sex hormone deficiencies. DESIGN/PATIENTS: Samples were obtained for analysis from two UK multicentre cohorts during hospitalisation with COVID-19 (International Severe Acute Respiratory Infection Consortium/World Health Organisation [WHO] Clinical Characterization Protocol for Severe Emerging Infections in the UK study), and at follow-up 5 months after hospitalisation (Post-hospitalisation COVID-19 study). MEASUREMENTS: Plasma steroids were quantified by liquid chromatography-mass spectrometry. Steroid concentrations were compared against disease severity (WHO ordinal scale) and validated symptom scores. Data are presented as geometric mean (SD). RESULTS: In the acute cohort (n = 239, 66.5% male), plasma cortisol concentration increased with disease severity (cortisol 753.3 [1.6] vs. 429.2 [1.7] nmol/L in fatal vs. least severe, p < .001). In males, testosterone concentrations decreased with severity (testosterone 1.2 [2.2] vs. 6.9 [1.9] nmol/L in fatal vs. least severe, p < .001). In the follow-up cohort (n = 198, 62.1% male, 68.9% ongoing symptoms, 165 [121-192] days postdischarge), plasma cortisol concentrations (275.6 [1.5] nmol/L) did not differ with in-hospital severity, perception of recovery, or patient-reported symptoms. Male testosterone concentrations (12.6 [1.5] nmol/L) were not related to in-hospital severity, perception of recovery or symptom scores. CONCLUSIONS: Circulating glucocorticoids in patients hospitalised with COVID-19 reflect acute illness, with a marked rise in cortisol and fall in male testosterone. These findings are not observed 5 months from discharge. The lack of association between hormone concentrations and common post-COVID symptoms suggests steroid insufficiency does not play a causal role in this condition.


Asunto(s)
COVID-19 , Humanos , Masculino , Femenino , Hidrocortisona , Enfermedad Aguda , Cuidados Posteriores , Alta del Paciente , Glucocorticoides/uso terapéutico , Esteroides/uso terapéutico , Gravedad del Paciente , Testosterona
2.
Brain Commun ; 6(1): fcad357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229877

RESUMEN

A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury.

3.
ERJ Open Res ; 10(4)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010888

RESUMEN

Background: The long-term outcomes of COVID-19 hospitalisation in individuals with pre-existing airway diseases are unknown. Methods: Adult participants hospitalised for confirmed or clinically suspected COVID-19 and discharged between 5 March 2020 and 31 March 2021 were recruited to the Post-hospitalisation COVID-19 (PHOSP-COVID) study. Participants attended research visits at 5 months and 1 year post discharge. Clinical characteristics, perceived recovery, burden of symptoms and health-related quality of life (HRQoL) of individuals with pre-existing airway disease (i.e., asthma, COPD or bronchiectasis) were compared to the non-airways group. Results: A total of 615 out of 2697 (22.8%) participants had a history of pre-existing airway diseases (72.0% diagnosed with asthma, 22.9% COPD and 5.1% bronchiectasis). At 1 year, the airways group participants were less likely to feel fully recovered (20.4% versus 33.2%, p<0.001), had higher burden of anxiety (29.1% versus 22.0%, p=0.002), depression (31.2% versus 24.7%, p=0.006), higher percentage of impaired mobility using short physical performance battery ≤10 (57.4% versus 45.2%, p<0.001) and 27% had a new disability (assessed by the Washington Group Short Set on Functioning) versus 16.6%, p=0.014. HRQoL assessed using EQ-5D-5L Utility Index was lower in the airways group (mean±SD 0.64±0.27 versus 0.73±0.25, p<0.001). Burden of breathlessness, fatigue and cough measured using a study-specific tool was higher in the airways group. Conclusion: Individuals with pre-existing airway diseases hospitalised due to COVID-19 were less likely to feel fully recovered, had lower physiological performance measurements, more burden of symptoms and reduced HRQoL up to 1 year post-hospital discharge.

4.
Lancet Psychiatry ; 11(9): 696-708, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39096931

RESUMEN

BACKGROUND: COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. METHODS: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2-3 years, and whether symptoms at 2-3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2-3 years were associated with occupation change. People with lived experience were involved in the study. FINDINGS: 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2-3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16-1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2-3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2-3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0-48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0-17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2-3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6-31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04-2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21-1·98] for every point increase in CCI-20). INTERPRETATION: Psychiatric and cognitive symptoms appear to increase over the first 2-3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. FUNDING: National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research.


Asunto(s)
COVID-19 , Hospitalización , Humanos , COVID-19/psicología , COVID-19/epidemiología , Femenino , Masculino , Reino Unido/epidemiología , Persona de Mediana Edad , Estudios Longitudinales , Estudios Prospectivos , Hospitalización/estadística & datos numéricos , Adulto , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/etiología , Anciano , Depresión/epidemiología , Depresión/psicología , SARS-CoV-2 , Cognición , Ansiedad/psicología , Ansiedad/epidemiología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA