Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 157(5): 1146-59, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855950

RESUMEN

E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Quimiotaxis , Técnicas Citológicas , Drosophila melanogaster/metabolismo , Femenino , Datos de Secuencia Molecular , Ovario/citología , Proteínas de Unión al GTP rac/metabolismo
2.
PLoS Genet ; 16(12): e1009228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33296356

RESUMEN

Signal transduction pathways are intricately fine-tuned to accomplish diverse biological processes. An example is the conserved Ras/mitogen-activated-protein-kinase (MAPK) pathway, which exhibits context-dependent signaling output dynamics and regulation. Here, by altering codon usage as a novel platform to control signaling output, we screened the Drosophila genome for modifiers specific to either weak or strong Ras-driven eye phenotypes. Our screen enriched for regions of the genome not previously connected with Ras phenotypic modification. We mapped the underlying gene from one modifier to the ribosomal gene RpS21. In multiple contexts, we show that RpS21 preferentially influences weak Ras/MAPK signaling outputs. These data show that codon usage manipulation can identify new, output-specific signaling regulators, and identify RpS21 as an in vivo Ras/MAPK phenotypic regulator.


Asunto(s)
Uso de Codones , Proteínas de Drosophila/genética , Genes Modificadores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas ras/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo
3.
Development ; 144(22): 4091-4102, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947534

RESUMEN

The molecular identities and regulation of cells at interorgan boundaries are often unclear, despite the increasingly appreciated role of organ boundaries in disease. Using Drosophila as a model, we here show that a specific population of adult midgut organ-boundary intestinal stem cells (OB-ISCs) is regulated by the neighboring hindgut, a developmentally distinct organ. This distinct OB-ISC control occurs through proximity to a specialized transition zone between the endodermal midgut and ectodermal hindgut that shares molecular signatures of both organs, which we term the hybrid zone (HZ). During homeostasis, proximity to the HZ restrains OB-ISC proliferation. However, injury to the adult HZ/hindgut drives upregulation of unpaired-3 cytokine, which signals through a Signal transducer and activator of transcription (STAT) protein to promote cell division only in OB-ISCs. If HZ disruption is severe, hyperplastic OB-ISCs expand across the interorgan boundary. Our data suggest that interorgan signaling plays an important role in controlling OB-ISCs in homeostasis and injury repair, which is likely to be crucial in prevention of disease.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Intestinos/citología , Especificidad de Órganos , Células Madre/citología , Animales , Carcinogénesis/patología , Ciclo Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Hiperplasia , Intestinos/crecimiento & desarrollo , Quinasas Janus/metabolismo , Larva/fisiología , Modelos Biológicos , Factores de Transcripción STAT/metabolismo , Transducción de Señal
4.
Nat Commun ; 15(1): 5270, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902233

RESUMEN

Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Células-Madre Neurales , Neuronas , Estabilidad del ARN , ARN Mensajero , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuronas/citología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Diferenciación Celular/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Codón/genética , Drosophila melanogaster/genética , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Drosophila/genética , Drosophila/metabolismo , Encéfalo/metabolismo , Encéfalo/citología , Factores de Transcripción
5.
bioRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546801

RESUMEN

Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent expression in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for expression control and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA and protein expression.

6.
Elife ; 112022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522036

RESUMEN

Codon usage bias has long been appreciated to influence protein production. Yet, relatively few studies have analyzed the impacts of codon usage on tissue-specific mRNA and protein expression. Here, we use codon-modified reporters to perform an organism-wide screen in Drosophila melanogaster for distinct tissue responses to codon usage bias. These reporters reveal a cliff-like decline of protein expression near the limit of rare codon usage in endogenously expressed Drosophila genes. Near the edge of this limit, however, we find the testis and brain are uniquely capable of expressing rare codon-enriched reporters. We define a new metric of tissue-specific codon usage, the tissue-apparent Codon Adaptation Index (taCAI), to reveal a conserved enrichment for rare codon usage in the endogenously expressed genes of both Drosophila and human testis. We further demonstrate a role for rare codons in an evolutionarily young testis-specific gene, RpL10Aa. Optimizing RpL10Aa codons disrupts female fertility. Our work highlights distinct responses to rarely used codons in select tissues, revealing a critical role for codon bias in tissue biology.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Codón/genética , Uso de Codones , Drosophila/genética , Drosophila melanogaster/genética , Femenino , Humanos , Masculino , Testículo
7.
Dev Cell ; 56(14): 2059-2072.e3, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34019841

RESUMEN

Individual organ development must be temporally coordinated with development of the rest of the organism. As a result, cell division cycles in a developing organ occur on a relatively fixed timescale. Despite this, many developing organs can regenerate cells lost to injury. How organs regenerate within the time constraints of organism development remains unclear. Here, we show that the developing Drosophila hindgut regenerates by accelerating the mitotic cell cycle. This process is achieved by decreasing G1 length and requires the JAK/STAT ligand unpaired-3. Mitotic capacity is then terminated by the steroid hormone ecdysone receptor and the Sox transcription factor Dichaete. These two factors converge on regulation of a hindgut-specific enhancer of fizzy-related, a negative regulator of mitotic cyclins. Our findings reveal how the cell-cycle machinery and cytokine signaling can be adapted to accomplish developmental organ regeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Fase G1 , Tracto Gastrointestinal/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Regeneración , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Tracto Gastrointestinal/lesiones , Tracto Gastrointestinal/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Masculino , Mitosis , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Genetics ; 214(2): 235-264, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029579

RESUMEN

The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.


Asunto(s)
Eliminación Intestinal/fisiología , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Desarrollo Embrionario , Endodermo , Homeostasis , Mucosa Intestinal/metabolismo , Intestinos/fisiología
9.
Elife ; 72018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30117808

RESUMEN

Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.


Asunto(s)
Proteínas Cdh1/genética , Ciclo Celular/genética , Sistema Digestivo/crecimiento & desarrollo , Proteínas de Drosophila/genética , Mucosa Gástrica/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/genética , Sistema Digestivo/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Mucosa Gástrica/citología , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Mitosis/genética , Transducción de Señal/genética
10.
Mol Biol Cell ; 22(14): 2491-508, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21613546

RESUMEN

Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change--cell extension along the anterior-posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.


Asunto(s)
Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Actomiosina/genética , Actomiosina/fisiología , Uniones Adherentes/genética , Uniones Adherentes/fisiología , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Forma de la Célula/genética , Forma de la Célula/fisiología , Citoesqueleto/genética , Citoesqueleto/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Gastrulación/genética , Mesodermo/crecimiento & desarrollo , Morfogénesis/genética , Morfogénesis/fisiología , Mutación
11.
Curr Top Dev Biol ; 89: 55-85, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19737642

RESUMEN

One key challenge for cell and developmental biologists is to determine how the cytoskeletal toolkit is used to build embryonic tissues and organs. Here, we review recent progress in meeting this challenge, focusing on epithelial morphogenesis in the Drosophila embryo as a model. We outline how actin and microtubule networks are regulated by embryonic patterning systems, and how they affect cell shape, cell behavior, and cell-cell interactions to shape epithelial structures. We focus on the formation of the first epithelium at cellularization, the assembly of junctions, apical constriction of cells in the ventral furrow, cell intercalation in the germband, and epithelial sheet migration during dorsal closure. These events provide models for uncovering the cell biological basis of morphogenesis.


Asunto(s)
Tipificación del Cuerpo , Citoesqueleto/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/embriología , Animales , Epitelio/embriología
12.
PLoS One ; 4(10): e7634, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19862327

RESUMEN

BACKGROUND: Tissue morphogenesis and organogenesis require that cells retain stable cell-cell adhesion while changing shape and moving. One mechanism to accommodate this plasticity in cell adhesion involves regulated trafficking of junctional proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here we explored trafficking of junctional proteins in two well-characterized model epithelia, the Drosophila embryonic ectoderm and amnioserosa. We find that DE-cadherin, the transmembrane protein of adherens junctions, is actively trafficked through putative vesicles, and appears to travel through both Rab5-positive and Rab11-positive structures. We manipulated the functions of Rab11 and Rab5 to examine the effects on junctional stability and morphogenesis. Reducing Rab11 function, either using a dominant negative construct or loss of function alleles, disrupts integrity of the ectoderm and leads to loss of adherens junctions. Strikingly, the apical junctional regulator Crumbs is lost before AJs are destabilized, while the basolateral protein Dlg remains cortical. Altering Rab5 function had less dramatic effects, not disrupting adherens junction integrity but affecting dorsal closure. CONCLUSIONS/SIGNIFICANCE: We contrast our results with what others saw when disrupting other trafficking regulators, and when disrupting Rab function in other tissues; together these data suggest distinct mechanisms regulate junctional stability and plasticity in different tissues.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Adhesión Celular , Cruzamientos Genéticos , Endocitosis , Genes Dominantes , Genes de Insecto , Microscopía Fluorescente/métodos , Mutación
13.
J Cell Biol ; 186(1): 57-73, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19596848

RESUMEN

Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin-afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster's afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin-catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis.


Asunto(s)
Actinas/metabolismo , Uniones Adherentes/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Proteínas de Microfilamentos/química , Actomiosina/metabolismo , Animales , Cadherinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Mesodermo/metabolismo , Morfogénesis , Mutación/genética , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas , Conejos , Homología de Secuencia de Aminoácido , alfa Catenina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA