Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622626

RESUMEN

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Asunto(s)
Cíclidos , Microplásticos , Animales , Microplásticos/metabolismo , Microplásticos/farmacología , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Ecosistema , Hígado/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Interleucina-6/metabolismo
2.
BMC Vet Res ; 20(1): 294, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970005

RESUMEN

Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.


Asunto(s)
Bagres , Ácido Hialurónico , Bazo , Animales , Ácido Hialurónico/sangre , Bazo/efectos de los fármacos , Bazo/patología , Relación Dosis-Respuesta a Droga
3.
J Environ Manage ; 351: 119845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109825

RESUMEN

Pyrogallol promotes free radicals leading to oxidative stress and toxicity. There are however a lack of studies on oxidative stress and the antioxidant system of fish following exposure to pyrogallol. This study measured oxidative stress markers, antioxidant responses, and histological changes in catfish exposed to pyrogallol. Fish were divided into one of four experimental groups: control only, or 1, 5 or 10 mg/L pyrogallol. After 15 days, glutathione-S-transferase in the serum was decreased in fish exposed to either 5 or 10 mg/L pyrogallol relative to controls while superoxide dismutase and total antioxidant capacity were decreased significantly in fish exposed to 1, 5, or 10 mg/L pyrogallol. Conversely, catalase was increased in serum of fish exposed to 1, 5, or 10 mg/L pyrogallol compared to controls. The liver of fish treated with 1, 5, or 10 mg/L pyrogallol had significantly higher levels of oxidative stress markers (malondialdehyde, lipid peroxidation, hydroperoxide content, oxidised protein content, and DNA fragmentation %) that varied with concentration. Catfish exposed to either 1, 5, or 10 mg/L pyrogallol presented with notable histological alterations in the intestine, kidney, and muscles with prominent fibrosis, as intense deposition of collagen fibre was observed by Masson's trichrome staining. Overall, endpoints related to oxidative stress and antioxidant defence enzymes in fish may be early biomarkers of pyrogallol exposure and contamination in aquatic ecosystems. Additional studies should characterize oxidative stress indicators for their utility as biomarkers of effect.


Asunto(s)
Bagres , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Pirogalol/toxicidad , Pirogalol/metabolismo , Ecosistema , Estrés Oxidativo , Bagres/metabolismo , Biomarcadores/metabolismo , Peroxidación de Lípido , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
4.
Photochem Photobiol Sci ; 19(2): 261-273, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31994581

RESUMEN

Ultraviolet radiation is an ecological factor that directly affects terrestrial organisms through suppression of immunity or damage to internal organs. The present study assessed the effects of ultraviolet A (UVA) radiation on the kidneys of both wild-type (WT) and p53-deficient medaka (Oryzias latipes) and evaluated which strain was more resistant to the effects of UVA. Fish were divided into four groups: control group 1 (Cwt and Cp53), kept for 3 days without UVA exposure; group 2 (1wt and 1p53), fish exposed daily to UVA for 1 h day-1 for 3 days; group 3 (2wt and 2p53), fish exposed daily to UVA for 2 h day-1 for 3 days; and group 4 (3wt and 3p53), fish exposed daily to UVA for 3 h day-1 for 3 days. Samples of tissues were obtained 24 h after UVA exposure. The most obvious histopathological changes induced by UVA radiation in kidney tissues of both strains of medaka (WT and p53-deficient) were high levels of vacuolation of tubular cells followed by necrosis. The tubular segments lost their normal shape which appeared like a network structure and their cells with clear cytoplasm. Necrosis of lymphoid tissues and spots of brown pigmentation (possibly melanomacrophages) were sporadically seen in interstitial lymphoid tissues, while shrinkage of glomeruli, diminution of periodic acid-Schiff staining, and increased amount of collagenous fibers were observed. Our results confirmed the harmful effects of UVA radiation on kidney tissues of both WT and p53-deficient medaka. However, WT medaka was affected more than p53-deficient medaka.


Asunto(s)
Riñón/efectos de la radiación , Oryzias/metabolismo , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta , Animales , Femenino , Riñón/patología , Necrosis , Proteína p53 Supresora de Tumor/deficiencia
5.
Pestic Biochem Physiol ; 167: 104600, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32527444

RESUMEN

The current work intended to inspect the hepato-nephrotoxicity of gibberellic acid (GA3) in juvenile of Oreochromis niloticus as well as the possibility of restoration after dietary addition of different concentrations of Spirulina platensis (SP). Fishes were evenly assorted into five groups: Group I assigned as control, Group II fed on basal diet and exposed to 150 mg/L gibberellic acid (GA3). The 3rd, 4th, and 5th groups exposed to150 mg/L gibberellic acid (GA3) and previously fed for two months on SP supplemented diets at levels of 5, 20, and 100 g/kg, respectively. Fish serum were utilized to check glucose, total protein, hepatic and renal functions, enzymatic and non-enzymatic antioxidants activities (superoxide dismautase; SOD, catalase; CAT, and total antioxidant capacity; TAC) as well as histopathological alterations in liver and kidney. The results showed that creatinine, uric acid, liver enzymes, glucose, total protein, SOD, and CAT were significantly elevated in GA3-treated group. Liver of GA3-treated fish manifested some histopathological changes (hypertrophy, cytoplasmic vacuolization, and apoptotic cells with pyknotic nuclei, necrosis, dilated blood sinusoids, and lymphocytic aggregation around the central veins). Kidney of GA3-exposed fish revealed edema of the epithelium lining of some renal tubules and some showed vacuolar degeneration and dissociation. Hypertrophy in the glomerulus was observed with dilated blood capillaries. SP supplementation restored these biochemical, antioxidants, and histological changes near to control levels. This improvement was higher with 100 g/kg SP showing concentration dependency. According to this study we can conclude that SP supplementation can improve the hepato- and nephrotoxicity caused by GA3 exposure indicating its role as potent antioxidant food additive.


Asunto(s)
Cíclidos , Spirulina , Animales , Antioxidantes , Giberelinas , Hígado , Estrés Oxidativo
6.
Photochem Photobiol Sci ; 18(1): 71-79, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30306185

RESUMEN

Ultraviolet radiation-induced neurodegeneration has been studied in the early stages of development in fish, but not extensively in the adult stage. The present study aimed at investigating the effects of ultraviolet radiation-A (UVA) in adult Japanese medaka (Oryzias latipes). The brain, spinal cord, and retina were examined histopathologically as nervous system target organs. Japanese medaka fish were exposed to 15, 30, and 60 min day-1 UVA for 3 days, and samples were obtained 24 h and 14 days after UVA exposure. Neurohistopathological alterations in brain tissue included vacuoles, blood congestion, degeneration of neuropils, and pyknotic nuclei in neurons. Alterations in the spinal cord included neuronal cell degeneration, reduction in the spinal cord area, and degeneration of Mauthner cells. Retinal tissue showed vacuolation in the nerve fiber layer (NFL), pyknotic nuclei in the ganglion cell layer (GCL), and decreased cell populations particularly in the inner nuclear layer (INL) and GCL. The degree of degeneration was dependent on the duration of UVA exposure. The signs of degeneration decreased gradually and disappeared completely after the 14-day recovery period. In addition, p53-deficient medaka fish were more tolerant than were wild-type (Hd-rR) Japanese medaka. In conclusion, UV radiation induced neurodegeneration in the brain, spinal cord, and retina of adult Japanese medaka (Oryzias latipes) but their normal histological architecture reappeared in these tissues after 14 days.

7.
Ecotoxicol Environ Saf ; 171: 638-646, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30658299

RESUMEN

The present study investigates the hemotoxic and cytotoxic impacts of two acute doses of silver nanoparticles (AgNPs) on the African catfish, Clarias garepinus in comparison to the impact of AgNO3 and the control fish. AgNPs-induced impacts were recorded on some biological and hematological indices of that species on the bases of their size (20 and 40 nm) and concentration (10 and 100 µg) but no significant interaction. AgNO3 had very low impact on these indices in comparison to AgNPs. Recovery period for 15 days was found to be valid to remove AgNPs and AgNO3 toxicity for most indices. The condition factor exhibited stability under stress whereas the hepatosomatic index was more sensitive to AgNPs. The AgNPs-induced hematological changes recorded were corresponding with different blood cell alterations which increased in frequency from the control and AgNO3 to 40 nm/100 µg; such blood cell alterations disappeared to great extent after recovery period of 15-days in a reverse order.


Asunto(s)
Bagres , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Eritrocitos/efectos de los fármacos , Microscopía Electrónica de Transmisión , Nitrato de Plata/toxicidad , Difracción de Rayos X
8.
Fish Physiol Biochem ; 45(6): 1895-1905, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31399920

RESUMEN

The present study investigates the nephrotoxic effects of two acute doses of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on the African catfish, Clarias gariepinus, using biochemical, histochemical, and histopathological changes as biomarkers. AgNP-induced impacts were recorded in some of these characteristics on the bases of their size (20 and 40 nm) and concentration (10 and 100 µg/L) but no significant interaction between size and concentration. AgNO3 had low significant adverse effects on some parameters in comparison with those impacts of AgNPs. The concentrations of creatinine and uric acid exhibited different significant variations under stress in all exposed groups compared with those in the control group. On the tissue and cell levels, histopathological changes were observed. These changes include hypertrophies of glomeruli, proliferation in the haemopoietic tissue, dissociation in renal tubules, shrinkage of glomerulus, hydropic degeneration, dilatation of renal tubules, aggregation of melanomacrophages, rupture of Bowman's capsule, and the glomerular tuft and dilatation of Bowman's space. In more severe cases, the degenerative process leads to tissue necrosis in the kidney of AgNP-exposed fish as well as carbohydrate depletion; a faint coloration was also observed in the brush borders and basement membrane with a large amount of connective tissue fibers around the blood vessels and the renal tubules. Recovery period for 15 days led to improvement of most of the alterations in biochemical, histopathological, and histochemical parameters induced by AgNPs and AgNO3. In conclusion, one can postulate on the sensitivity of the kidney of C. gariepinus to AgNPs and recovery strategy is a must.


Asunto(s)
Bagres , Riñón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Creatinina/análisis , Riñón/patología , Nitrato de Plata/toxicidad , Ácido Úrico/análisis
9.
Ecotoxicol Environ Saf ; 149: 159-165, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29156308

RESUMEN

The antioxidant role of the green tea (Camellia sinensis) extract (GTE) was examined to remedy the toxic effects of (0.2mgl-1) 4-nonylphenol(4-NP). Biochemical parameters, antioxidant enzymes, liver lipid peroxidation (LPO), DNA fragmentation, and apoptosis as well as histopathology of liver of African catfish Clarias gariepinus were considered. Catfishes were divided into four groups: first group (control), second group (0.2mgl-1 of 4-NP), third group (0.2mgl-1of 4-NP +100mg GTE l-1water), and fourth group (0.2mgl-1 of 4-NP +200mg GTE l-1water). The results showed that significant increments of serum glucose, AST, ALT, total protein, total lipids, cholesterol, G6PDH, and cortisol. Meanwhile, serum acetylcholinesterase, ALP, and LDH were significantly reduced. In addition, antioxidant enzymes (SOD, CAT, GST, and TAC) levels were reduced in 4-NP treated fish compared to control. Also, there were significant increments in hepatic LPO, DNA fragmentation, and apoptotic erythrocytes in 4-NP treated fish compared to control. Liver of 4-NP treated fish showed some histopathological alterations such as, vacuolization in hepatocytes, congestion in central vein, infiltration of mononuclear inflammatory cells, and necrosis as well as depletion of glycogen content of liver. Addition of green tea extract into the water restored the alterations in most of those biomarkers induced by 4-NP. We concluded that, GTE has a protective role against hepatic failure, depletion of antioxidant defense, and genotoxicity induced 4-NP in C. gariepinus.


Asunto(s)
Antioxidantes/farmacología , Camellia sinensis/química , Bagres/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenoles/toxicidad , Extractos Vegetales/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Bagres/sangre , Fragmentación del ADN/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología
10.
Ecotoxicol Environ Saf ; 163: 136-144, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30053583

RESUMEN

Sodium dodecyl sulfate (SDS) as anionic surfactant is common in household and personal care products and reach in the aquatic ecosystems from different applications. Present work aimed to study the effects of SDS and the potential ameliorative influence of Spirulina platensis (SP) in the African catfish Clarias gariepinus. Fish was exposed to SDS and SP, individually or in combination in four equal groups for two weeks. The 1st group (control), 2nd group (SDS-treated), 3rd group (SDS, 0.1 mg L-1 + SP, 100 mg L-1 water) and 4th group (SDS, 0.1 mg L-1 + SP, 200 mg L-1). Serum samples were used to analyze hepatic and renal functions, electrolytes, genetic, and antioxidant biomarkers. The results revealed that SDS exposure induced hepatic and renal dysfunction, electrolytes imbalance, as well as significant disruption in enzymatic and non-enzymatic antioxidants, and increase in alterations, micronuclei and apoptosis percentages in erythrocytes. SP addition restored these biochemical and genetic variations close to control levels. Thus, the present study suggests that SP could protect the catfish against SDS-induced injury by scavenging ROS, sustaining the antioxidant status and diminishing DNA oxidative damage.


Asunto(s)
Bagres/metabolismo , Dodecil Sulfato de Sodio/toxicidad , Spirulina , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Daño del ADN/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 139: 97-101, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28113117

RESUMEN

In this study, we assessed the toxic effects of sub lethal concentration (0.1mgl-1) 4-nonylphenol (4-NP) on serum biochemical parameters, liver lipid peroxidation (LPO) and antioxidant enzymes of the African catfish Clarias gariepinus for 14 days and the ability of the quince leaf extract to alleviate the effects of (4-NP). Fish were categorized into four groups: control, exposure to 0.1mgl-1 4-NP, exposure to 0.1mgl-1 4-NP with quince leaf extract (10ml/30L water), and exposure to 0.1mgl-1 4-NP with quince leaf extract (20ml/30L water). 4-NP exposure induced a significant (p<0.05) increase in the levels of glucose, AST, ALT, creatinine, urea, uric acid, cholesterol, and G6PDH as well as, the percentages of hepatic LPO level, DNA fragmentation, and apoptotic erythrocytes (p<0.05). A significant (p<0.05) decrease in alkaline phosphatase (ALP), total protein, albumin, globulin, total lipids, and LDH were also recorded. Liver enzyme activities (SOD, CAT and TAC) were increased. Addition of the quince leaf extract into the water was able to reinstate the alterations in biochemical parameters, antioxidant biomarkers, apoptotic level and hepatic DNA damage induced by 4-NP.


Asunto(s)
Apoptosis/efectos de los fármacos , Bagres/fisiología , Fragmentación del ADN/efectos de los fármacos , Fenoles/toxicidad , Extractos Vegetales/farmacología , Rosaceae , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Bagres/metabolismo , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hojas de la Planta/metabolismo
12.
Ecotoxicol Environ Saf ; 143: 344-350, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28554489

RESUMEN

Lead (Pb) is a toxic environmental pollutant that induces a broad range of biochemical and physiological hazards in living organisms. We investigated the possible hepatoprotective effects of Spirulina platensis (SP) in counteracting the Pb-induced oxidative damage. Ninety-six adult African catfish were allocated into four equal groups. The 1st group (control) fed basal diet while the 2nd group (Pb-treated) fed on basal diet and exposed to 1mg Pb(NO3)2/L. The 3rd and 4th groups fed SP-supplemented basal diets at levels of 0.25% and 0.5%, respectively and exposed to Pb. Serum samples were used to analyze hepatic function biomarkers, electrolytes, and oxidant and antioxidant status. Lipid peroxidation and DNA fragmentation were determined in the liver tissues. Pb exposure induced hepatic dysfunction, electrolytes (Na+, K+, Ca+2, and Cl-) imbalance, as well a significant decrease in GSH content, and LDH, AChE, SOD, CAT and GST enzymes activity. SP supplementation reverted these biochemical and genetic alterations close to control levels. This amelioration was higher with 0.5% SP and at the 4th week of exposure, showing concentration- and time-dependency. Thus, the current study suggests that SP could protect the catfish liver against lead-induced injury by scavenging ROS, sustaining the antioxidant status and diminishing DNA oxidative damage. The dietary inclusion of SP can be used as a promising protective agent to counteract oxidative stress-mediated diseases and toxicities.


Asunto(s)
Bagres/metabolismo , Daño del ADN , Plomo/toxicidad , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Spirulina , Contaminantes Químicos del Agua/toxicidad , Alimentación Animal , Animales , Antioxidantes/metabolismo , Biomarcadores/sangre , Bagres/sangre , Bagres/crecimiento & desarrollo , Daño del ADN/efectos de los fármacos , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Plomo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Spirulina/química , Contaminantes Químicos del Agua/metabolismo
13.
Fish Physiol Biochem ; 43(4): 1095-1104, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28285354

RESUMEN

Exposure to xenoestrogens like 4-nonylphenol (NP) is recognized by disrupting endocrine functions and causes reproductive dysfunction in male fish. The present study aimed at investigating the 4-nonylphenol propensity to induce oxidative stress and hormonal disturbances in male catfish and at studying the protective role of quince (Cydonia oblonga). To fulfill this aim, catfish Clarias gariepinus were exposed to pure 100 µg/L 4-NP and to quince the leaf extract added to 4-NP, both for 15 days. The 4-NP exposure induced a marked increase in 17ß-estradiol (E2), LH, and cortisol, while thyroid hormone (TSH, T3), testosterone (T), and FSH levels noticeably decreased; however, 4-NP had no effect on T4 level. Moreover, 4-NP exposure was accompanied by histological impairments in testes. Existence of 4-NP was associated with oxidative damage as evidenced by the significant increase (p < 0.05) of the enzymes, superoxidase dismutase (SOD), catalase (CAT), acetylcholinesterase (AchE), glutathione s-transferase, total antioxidant capacity (TAC), and malondialdehyde (MDA). Adding quince was effective to neutralize hormonal levels and to repair the testicular histological alterations. In response to quince remedy, the enzymes AchE and MDA reduced significantly (p < 0.05), while limited or no response was detected for other tested enzymes. Our results concluded that quince can antagonize 4-NP toxicity in catfish, confirming that quince leaf extract displayed antioxidant activities against the toxicity of hazardous chemicals.


Asunto(s)
Bagres , Disruptores Endocrinos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Rosaceae/química , Enfermedades Testiculares/veterinaria , Testículo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Enzimas/metabolismo , Masculino , Extractos Vegetales/química , Enfermedades Testiculares/inducido químicamente
14.
Ecotoxicol Environ Saf ; 128: 189-94, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26946283

RESUMEN

Calotropis procera L. is known as medicinal plant. The Phytochemical analyzes of its latex revealed that it possessed antioxidants, namely terpenes, phenolic compounds and cardenolides, flavonoids and saponins, while tannins, alkaloids and resin were absent in moderate to high concentration. In the present study, the role of latex of Calotropis procera as antioxidant and antiapoptotic was reported. To carry out this aim, fishes were exposed to 100 µg l(-1) 4-nonylphenol as chemical pollutant. The enzymes, superoxidase dismutase, catalase, acetlycholinstrase (AchE), glutathione s-transferase, cortisol, G6PDH) and apoptotic cells increased significantly (p<0.05) accompanied by irregular disturbance of (Na(+), K(+)) ions in the presence of 4-nonylphenol. On the other hand, these enzymes, ions, and apoptotic cells decreased normally and significantly (p<0.05) in the presence of latex. Total phenol content, total capacity antioxidant, reducing power decrease significantly (p<0.05) in the presence of 4-nonylphenol and increase normally in the presence of latex. Latex was used for the first time to protect catfish after 4-nonylphenol exposure. Our study confirms that crude latex of Calotropis procera possessed antioxidant and antiapoptotic activities against the toxicity of 4-Nonylphenol.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Calotropis/química , Bagres/metabolismo , Látex/farmacología , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/aislamiento & purificación , Catalasa/sangre , Bagres/sangre , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Glutatión Transferasa/sangre , Látex/aislamiento & purificación , Masculino , Extractos Vegetales/química , Superóxido Dismutasa/sangre
15.
Environ Monit Assess ; 187(12): 751, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26573688

RESUMEN

Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5% + As at the same level of exposure), and SP2 (SP at 10% + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10% had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication.


Asunto(s)
Antioxidantes/uso terapéutico , Arsénico/toxicidad , Productos Biológicos/uso terapéutico , Cíclidos/fisiología , Monitoreo del Ambiente , Spirulina/química , Contaminantes Químicos del Agua/toxicidad , Animales , Cíclidos/microbiología , Daño del ADN , Suplementos Dietéticos , Eritrocitos
16.
Front Physiol ; 15: 1380652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846421

RESUMEN

Despite numerous studies on microplastics, the biological impacts of polypropylene microplastics (PP-MPs) and its toxicity on freshwater fish have yet to be fully revealed. The purpose of this research was to look at the potentially harmful effects of PP-MPs in freshwater African catfish Clarias gariepinus and bioremediation using Spirulina. After acclimatization to laboratory conditions, 108 fish (125 ± 3 gm and 27 ± 2 cm) were assigned into triplicate six experimental groups (12 fish/group), a control group, Spirulina group (SP), PP-MP-treated groups (0.14 and 0.28 mg/l PP-MPs), and PP-MP + Spirulina-treated groups (0.14 mg/l PP-MPs + 200 mg/L SP and 0.28 mg/l PP-MPs +200 mg/L SP) for 15-day exposure and 45-day recovery after that. The hematological parameters exhibiting significance (RBCs, Hct, Hb, and MCV) or non-significance (MCH and MCHC) either decreased with the increase in PP-MP doses from 0.0 in the control to 0.28 mg/L red blood cells (RBCs), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) and platelets or increased with such an increase in doses (mean corpuscular volume (MCV)). The liver enzyme activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) exhibited non-significant (p ≥ 0.05) or significant (p < 0.05) increases in (0.14 and 0.28 mg/L) PP-MP-exposed groups, respectively, except ALP. Furthermore, there was a significant (p < 0.05) or non-significant (p ≥ 0.05) increase in 0.14 and 0.28 mg/l PP-MP +200 mg/L-exposure groups, respectively, compared to the control group and the same exposure group without Spirulina. In comparison to the control group, PP-MPs (0.14 and 0.28 mg/L) induced a significant (p < 0.05) increase in the percentage of poikilocytosis and nuclear abnormalities of RBCs. The liver tissue from fish exposed to PP-MPs exhibited varying degrees of pathological changes. These results indicated that these pathological changes increased with PP-MP concentration, suggesting that the effect of PP-MPs was dose-dependent. After 45 days of recovery under normal conditions, it was obvious that there was a significant improvement in the percentage of poikilocytosis and nuclear abnormalities of RBCs, as well as a non-significant improvement in hemato-biochemical parameters and liver tissue.

17.
Sci Rep ; 14(1): 14576, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914580

RESUMEN

The joint impact of tadalafil (Cilais) as a pharmaceutical residue and microplastics on fish is not well comprehended. The current study examined haematological, biochemical, and antioxidant parameters, along with immunohistochemical and histological indications in tilapia (Oreochromis niloticus) after being exposed to tadalafil, polyethylene microplastics (PE-MPs), and their mixtures for 15 days. The fish were distributed into 1st group control group (The fish was maintained in untreated water without any supplements); 2nd group exposed to 10 mg/L PE-MPs;3rd group exposed to 20 mg/l tadalafil (Cilais); 4th group exposed to 20 mg/l tadalafil (Cilais) + 10 mg/LPE-MPs (in triplicate). The levels of creatinine, uric acid, glucose, AST, ALT, and albumin in fish treated with tadalafil alone or in combination with PE-MPs were significantly higher than those in the control group. Fish exposed to PE-MPs, tadalafil, and tadalafil plus PE-MPs showed significantly lower levels of RBCs, Hb, Ht, neutrophils, and lymphocytes compared to the control group. Serum levels of total antioxidant capacity and reduced glutathione (GSH) were notably lowered in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations in comparison to the control group. Malondialdehyde (MDA) serum levels were notably elevated in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations compared to the control group. The most severe impact was observed in the tadalafil + PE-MPs combination group. Interleukin-6 (IL-6) levels were significantly increased in liver tissues following exposure to both tadalafil and microplastics compared to tissues exposed to only one substance or the control group. Changes in the gills, liver, and renal tissues were seen following exposure to PE-MPs, tadalafil, and tadalafil + PE-MPs combination in comparison to the control group of fish. Ultimately, the mixture of tadalafil and PE-MPs resulted in the most detrimental outcomes. Tadalafil and PE-MPs exhibited showed greater adverse effects, likely due to tadalafil being absorbed onto PE-MPs.


Asunto(s)
Cíclidos , Microplásticos , Tadalafilo , Contaminantes Químicos del Agua , Animales , Tadalafilo/farmacología , Cíclidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Antioxidantes/metabolismo , Tilapia/metabolismo , Glutatión/metabolismo , Glutatión/sangre , Branquias/efectos de los fármacos , Branquias/metabolismo , Estrés Oxidativo/efectos de los fármacos
18.
Sci Total Environ ; 923: 171277, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408651

RESUMEN

Black sand along the Red Sea is often composed of volcanic minerals and heavy minerals. The Red Sea region is known for its unique geological features, and black sand beaches can be found in various areas along its shores. The study presents a comprehensive semi-quantitative chemical analysis of black sand samples collected from various locations along the red sea, revealing significant variations in their elemental compositions. The main oxides were identified in each sample, determined through X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses, indicate diverse mineralogical compositions. The spatial distribution of minerals at each site is depicted through mapping. Additionally, Fourier-transform infrared (FTIR) spectra offer information on the functional groups present in the samples, revealing the existence of hydroxyl groups, aliphatic compounds, and adsorbed water molecules. For Qusier-Elsharm Alqbly, Safaga, Marsa Alam, Gabal Alrosass, Hurghada Titanic, Hurghada Elahiaa, Gemsa, and Ras Elbehar samples, the results highlight the presence of various minerals, such as Quartz, Calcite, Titanium Dioxide, Magnetite, Hematite, Aluminum Oxide, Zirconium Dioxide, Chromium (III) Oxide, and others, providing insights into the geological characteristics of each location. The differences in mineral content among the examined sites are linked to the geological and mineralogical makeup of the source rocks upstream and midstream in the basins that discharge into the surveyed regions. So, variations in black sand concentrations among different locations offer insights into the geological and mineralogical diversity of the studied areas along the Red Sea coast. This study addresses the existing knowledge gap by focusing on the preliminary exploration and description of the occurrence, distribution, and composition of black sand along the Red Sea in Egypt. whereas the results provide valuable insights into the geological diversity of black sand deposits in the surveyed areas, underscoring the need for additional research and interpretation of these variations. Therefore, the in-depth examination of mineralogical composition and crystal structures establishes a foundation for future investigations in the field of geology and earth sciences.

19.
Sci Rep ; 14(1): 7219, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538743

RESUMEN

Petroleum aromatic hydrocarbons are considered one of the most dangerous aquatic pollutants due to their widespread across water bodies, persistence, and extension to the food chain. To our knowledge, there hasn't been any research investigating the hepatorenoprotective effects of Spirulina platensis (SP) against toxicity induced by these environmental toxicants in fish. Thus, we decided to explore its potential safeguarding against benzene and toluene exposure in adult Clarias gariepinus. To achieve this objective, fish were divided into five groups (60 per group; 20 per replicate). The first group served as a control. The second and third groups were intoxicated with benzene and toluene at doses of 0.762 and 26.614 ng/L, respectively for 15 days. The fourth and fifth groups (SP + benzene and SP + toluene, respectively) were challenged with benzene and toluene as previously mentioned following dietary inclusion of SP at a dose of 5 g/kg diet for 30 days. The marked increase in liver metabolizing enzymes, glucose, total protein, albumin, globulin, albumin/globulin ratio, and creatinine confirmed the hepato- and nephrotoxic impacts of benzene and toluene. These outcomes were coupled with cytopathological affections and excessive collagen deposition. The incorporation of SP in ration formulation, on the contrary, restored the previously mentioned toxicological profile due to its antioxidant and cytoprotective attributes. Regardless of SP intervention, the renal tissues still displayed histo-architectural lesions, because of insufficient dose and timeframe. Additional research will be required to identify the ideal SP remediation regimen.


Asunto(s)
Bagres , Globulinas , Spirulina , Animales , Benceno/metabolismo , Bagres/metabolismo , Globulinas/metabolismo , Tolueno/metabolismo , Albúminas/metabolismo
20.
Environ Pollut ; 352: 124104, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703978

RESUMEN

Endocrine disruptors are synthetic or natural chemicals that can agonize/antagonize hormone receptors or can interfere with the production and secretion of hormones, leading to altered tissue histology and physiology. Pyrogallol is a contaminant widely distributed in aquatic environments that presents health risks to both humans and animals. However, the potential for endocrine disruption by pyrogallol, particularly in fish, are lacking. The purpose of this study was to shed light on how pyrogallol may affect hormone signalling, histopathology, and reproductive outcomes in African catfish Clarias gariepinus. To investigate this, African catfish were exposed to one sublethal concentration of pyrogallol at either 0, 1, 5 or 10 mg/L for 15 days. We then assessed the effects of pyrogallol on the thyroid gland as well as the reproductive system by measuring sex hormone, seminal quality, gonadal histopathology, and histochemistry. Thyroid stimulating hormone and thyroxine showed notable decreases in catfish, and triiodothyronine was decreased with 10 mg/L pyrogallol. Unlike luteinizing hormone, follicle-stimulating hormone was significantly reduced in fish following exposure to pyrogallol relative to controls. Testosterone was also decreased in fish following pyrogallol exposure, whereas 17ß-estradiol increased in catfish exposed to pyrogallol. Additionally, in response to pyrogallol toxicity, sperm quality indices, including count, spermatocrit, motility, and sperm viability were adversely affected in a concentration-dependent manner. Pyrogallol exposure also induced several changes in the gonad following exposure to 1, 5, or 10 mg/L. Deformed tubular structures, vacuolation, thickening of the basement membrane, hypertrophy of the seminiferous tubules, intense melanomacrophage localization, spermatozoa loss, and necrosis were all observed in the testes. In the ovary, atretic follicles, deteriorated mature oocytes, degenerated yolk globules, and an increase in perinucleolar oocytes were observed in catfish exposed to pyrogallol. These findings suggest that pyrogallol may act as endocrine disrupting substance in aquatic environments. Further research on the mechanisms by which pyrogallol impairs endocrine systems, particularly in fish, is recommended.


Asunto(s)
Bagres , Disruptores Endocrinos , Pirogalol , Reproducción , Contaminantes Químicos del Agua , Animales , Bagres/fisiología , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Masculino , Pirogalol/toxicidad , Pirogalol/análogos & derivados , Femenino , Glándula Tiroides/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA