Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(3): 533-48, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863007

RESUMEN

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exoma , Enfermedades Renales Quísticas/genética , Proteínas de Microtúbulos/metabolismo , Animales , Cilios/metabolismo , Técnicas de Silenciamiento del Gen , Genes Recesivos , Humanos , Proteína Homóloga de MRE11 , Ratones , Proteínas , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo
2.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
3.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35896117

RESUMEN

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Quistes/genética , Fibrosis , Humanos , Riñón/patología , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Secuenciación del Exoma
4.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397207

RESUMEN

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Cilios , Adulto , Animales , Cardiomiopatía Hipertrófica/metabolismo , Niño , Cilios/genética , Cilios/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón , Hígado , Mutación/genética , Pez Cebra/genética
5.
Am J Hum Genet ; 109(1): 136-156, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34890546

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.


Asunto(s)
Alelos , Proteínas Portadoras , Predisposición Genética a la Enfermedad , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Adulto , Anciano , Sustitución de Aminoácidos , Bancos de Muestras Biológicas , Cilios/patología , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Función Renal , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Riñón Poliquístico Autosómico Dominante/diagnóstico , Análisis de Secuencia de ADN , Reino Unido , Secuenciación del Exoma
6.
Lancet ; 403(10433): 1279-1289, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492578

RESUMEN

BACKGROUND: Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. METHODS: People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). FINDINGS: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32-0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. INTERPRETATION: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3-5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. FUNDING: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Tasa de Filtración Glomerular , Riñón , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/etiología , Radar , Enfermedades Raras , Sistema de Registros , Insuficiencia Renal/epidemiología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/complicaciones , Reino Unido/epidemiología , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
7.
Gastroenterology ; 166(5): 902-914, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101549

RESUMEN

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Asunto(s)
Hospitalización , Hepatopatías , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Unión al Calcio , Quistes/genética , Quistes/diagnóstico por imagen , Quistes/patología , Progresión de la Enfermedad , Europa (Continente) , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Glucosidasas/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagen , Hospitalización/estadística & datos numéricos , Hígado/patología , Hígado/diagnóstico por imagen , Hepatopatías/genética , Hepatopatías/patología , Hepatopatías/diagnóstico por imagen , Chaperonas Moleculares , Tamaño de los Órganos , Pronóstico , Medición de Riesgo , Factores de Riesgo , Proteínas de Unión al ARN , Índice de Severidad de la Enfermedad , Factores Sexuales , Estados Unidos/epidemiología
8.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35947615

RESUMEN

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Asunto(s)
Insuficiencia Renal Crónica , Uromodulina , Heterocigoto , Humanos , Mutación , Insuficiencia Renal Crónica/genética , Uromodulina/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-38544324

RESUMEN

BACKGROUND: Molecular mechanisms of kidney stone formation remain unknown in most patients. Previous studies showed high a heritability of nephrolithiasis, but data on prevalence and characteristics of genetic disease in unselected adults with nephrolithiasis are lacking. This study was conducted to fill this important knowledge gap. METHODS: We performed whole exome sequencing in 787 participants of the Bern Kidney Stone Registry, an unselected cohort of adults with ≥ 1 past kidney stone episode (KSF), and 114 non-stone-forming individuals (NKSF). An exome-based panel of 34 established nephrolithiasis genes was analyzed and variants assessed according to ACMG criteria. Pathogenic (P) or likely pathogenic (LP) variants were considered diagnostic. RESULTS: Mean age of KSF was 47±15 years, and 18% were first time KSF. A Mendelian kidney stone disease was present in 2.9% (23 of 787) of KSF. The most common genetic diagnoses were cystinuria (SLC3A1, SLC7A9; n=13), Vitamin D-24 hydroxylase deficiency (CYP24A1; n=5) and primary hyperoxaluria (AGXT, GRHPR, HOGA1; n=3). 8.1% (64 of 787) of KSF were monoallelic for LP/P variants predisposing to nephrolithiasis, most frequently in SLC34A1/A3 or SLC9A3R1 (n=37), CLDN16 (n=8) and CYP24A1 (n=8). KSF with Mendelian disease had a lower age at the first stone event (30±14 years vs. 36±14 years, p=0.003), were more likely to have cystine stones (23.4% vs. 1.4%) and less likely to have calcium oxalate monohydrates stones (31.9% vs. 52.5%) compared to KSF without genetic diagnosis. The phenotype of KSF with variants predisposing to nephrolithiasis was subtle and showed significant overlap with KSF without diagnostic variants. In NKSF, no Mendelian disease was detected, and LP/P variants were significantly less prevalent compared to KSF (1.8% vs. 8.1%). CONCLUSION: Mendelian disease is uncommon in unselected adult KSF, yet variants predisposing to nephrolithiasis are significantly enriched in adult KSF.

10.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598857

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Recién Nacido , Ratones , Proteínas Portadoras/metabolismo , Cilios/patología , Riñón/metabolismo , Mutación , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Serina/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
11.
J Cell Sci ; 134(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34155518

RESUMEN

Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects. Here, we show that milder phenotypes in genetic mutants were associated with the upregulation of genes encoding the cilia-associated small GTPases arl3, arl13b and unc119b. Upregulation of UNC119b was also observed in urine-derived renal epithelial cells from human Joubert syndrome CEP290 patients. Ectopic expression of arl3, arl13b and unc119b in cep290 morphant zebrafish embryos rescued Kupffer's vesicle cilia and partially rescued photoreceptor outer segment defects. The results suggest that genetic compensation by upregulation of genes involved in a common subcellular process, lipidated protein trafficking to cilia, may be a conserved mechanism contributing to genotype-phenotype variations observed in CEP290 deficiencies. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cilios , Proteínas del Citoesqueleto , Proteínas de Unión al GTP Monoméricas , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Cilios/genética , Cilios/metabolismo , Proteínas del Citoesqueleto/genética , Humanos , Proteínas Asociadas a Microtúbulos , Mutación/genética , Regulación hacia Arriba/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Genet Med ; 25(3): 100351, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36571463

RESUMEN

PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.


Asunto(s)
Nefrolitiasis , Receptores Purinérgicos P2 , Humanos , Oxalato de Calcio , Nefrolitiasis/genética , Mutación Missense/genética , Transportadores de Sulfato/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo
13.
Clin Genet ; 103(3): 330-334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36273371

RESUMEN

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Asunto(s)
Ciliopatías , Humanos , Síndrome , Ciliopatías/genética , Proteínas/genética , Riñón , Mutación , Cilios/genética
14.
Nephrol Dial Transplant ; 38(2): 271-282, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-34519781

RESUMEN

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.


Asunto(s)
Enfermedades Renales Poliquísticas , Insuficiencia Renal Crónica , Humanos , Mutación , Fibrosis , Uromodulina/genética
15.
Proc Natl Acad Sci U S A ; 117(2): 1113-1118, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879347

RESUMEN

Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Anomalías del Ojo/genética , Genes Modificadores , Enfermedades Renales Quísticas/genética , Retina/anomalías , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad/genética , Enfermedades Renales , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad
16.
Hum Mutat ; 43(12): e24-e37, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177613

RESUMEN

The use of genetic testing within nephrology is increasing and its diagnostic yield depends on the methods utilized, patient selection criteria, and population characteristics. We performed exome sequencing (ES) analysis on 102 chronic kidney disease (CKD) patients with likely genetic kidney disease. Patients had diverse CKD subtypes with/without consanguinity, positive family history, and possible hereditary renal syndrome with extra-renal abnormalities or progressive kidney disease of unknown etiology. The identified genetic variants associated with the observed kidney phenotypes were then confirmed and reported. End-stage kidney disease was reported in 51% of the cohort and a family history of kidney disease in 59%, while known consanguinity was reported in 54%. Pathogenic/likely pathogenic variants were identified in 43 patients with a diagnostic yield of 42%, and clinically associated variants of unknown significance (VUS) were identified in further 21 CKD patients (21%). A total of eight novel predicted pathogenic variants and eight VUS were detected. The clinical utility of ES within the nephrology clinic was demonstrated allowing patient management to be disease-specific. In this cohort, ES detected a diagnostic molecular abnormality in 42% of patients with CKD phenotypes. Positive family history and high rates of consanguinity likely contributed to this high diagnostic yield.


Asunto(s)
Pruebas Genéticas , Insuficiencia Renal Crónica , Humanos , Arabia Saudita/epidemiología , Secuenciación del Exoma , Consanguinidad , Pruebas Genéticas/métodos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
17.
Am J Med Genet C Semin Med Genet ; 190(1): 109-120, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35289079

RESUMEN

Monogenic disorders of the kidney typically affect either the glomerular or tubulointerstitial compartment producing a distinct set of clinical phenotypes. Primary focal segmental glomerulosclerosis (FSGS), for instance, is characterized by glomerular scarring with proteinuria and hypertension while nephronophthisis (NPHP) is associated with interstitial fibrosis and tubular atrophy, salt wasting, and low- to normal blood pressure. For both diseases, an expanding number of non-overlapping genes with roles in glomerular filtration or primary cilium homeostasis, respectively, have been identified. TTC21B, encoding IFT139, however has been associated with disorders of both the glomerular and tubulointerstitial compartment, and linked with defective podocyte cytoskeleton and ciliary transport, respectively. Starting from a case report of extreme early-onset hypertension, proteinuria, and progressive kidney disease, as well as data from the Genomics England 100,000 Genomes Project, we illustrate here the difficulties in assigning this mixed phenotype to the correct genetic diagnosis. Careful literature review supports the notion that biallelic, often hypomorph, missense variants in TTC21B are commonly associated with early-onset hypertension and histological features of both FSGS and NPHP. Increased clinical recognition of this mixed glomerular and tubulointerstitial disease with often mild or absent features of a typical ciliopathy as well as inclusion of TTC21B on gene panels for early-onset arterial hypertension might shorten the diagnostic odyssey for patients affected by this rare tubuloglomerular kidney disease.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Hipertensión , Enfermedades Renales , Femenino , Fibrosis , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Hipertensión/genética , Riñón/patología , Enfermedades Renales/genética , Masculino , Proteinuria/complicaciones , Proteinuria/genética , Proteinuria/patología
18.
Kidney Int ; 102(2): 405-420, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643372

RESUMEN

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Adulto , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética
19.
Ann Hum Genet ; 86(3): 145-152, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34888854

RESUMEN

Alport syndrome is a genetic disorder affecting the basement membranes of the kidney, ear and eye, and represents a leading cause of monogenic kidney disease. Alport syndrome is genetically heterogeneous with three key genes involved (COL4A3-5) and several transmission patterns, including monogenic X-linked, autosomal recessive/dominant and digenic. We report a consanguineous family where 13 individuals presented variable features of Alport syndrome including kidney failure on two generations and male-to-male transmission, suggesting autosomal dominant inheritance. COL4A3-5 gene panel analysis surprisingly reveals two distinct, confirmed splice-altering variants in COL4A3 (NM_000091.4: c.1150+5G>A and c.4028-3C>T) present in homozygous or compound heterozygous state in individuals with kidney failure. This adds a further mode of transmission for Alport syndrome where, in a consanguineous family, the independent segregation of two variants at the same locus may create a pseudodominant transmission pattern. These findings highlight the importance of a molecular diagnosis in Alport syndrome for genetic risk counselling, given the variable modes of inheritance, but also the pitfalls of assuming identity by descent in consanguineous families.


Asunto(s)
Colágeno Tipo IV , Nefritis Hereditaria , Insuficiencia Renal , Autoantígenos/genética , Colágeno Tipo IV/genética , Humanos , Masculino , Mutación , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Linaje
20.
Hum Genet ; 141(1): 101-126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34853893

RESUMEN

Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.


Asunto(s)
Aberraciones Cromosómicas , Ciliopatías/genética , Feto/anomalías , Feto/fisiopatología , Variación Genética , Estudios de Cohortes , Consanguinidad , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Análisis por Micromatrices , Fenotipo , Embarazo , Diagnóstico Prenatal/métodos , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA