Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 481(11): 669-682, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38713013

RESUMEN

The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Escherichia coli , SARS-CoV-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/biosíntesis , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Proteínas de la Nucleocápside de Coronavirus/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Humanos , COVID-19/virología , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo
2.
Antimicrob Agents Chemother ; 66(12): e0092622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409116

RESUMEN

Bacterial pathogens are confronted with a range of challenges at the site of infection, including exposure to antibiotic treatment and harsh physiological conditions, that can alter the fitness benefits and costs of acquiring antibiotic resistance. Here, we develop an experimental system to recapitulate resistance gene acquisition by Staphylococcus aureus and test how the subsequent evolution of the resistant bacterium is modulated by antibiotic treatment and oxygen levels, both of which are known to vary extensively at sites of infection. We show that acquiring tetracycline resistance was costly, reducing competitive growth against the isogenic strain without the resistance gene in the absence of the antibiotic, for S. aureus under hypoxic but not normoxic conditions. Treatment with tetracycline or doxycycline drove the emergence of enhanced resistance through mutations in an RluD-like protein-encoding gene and duplications of tetL, encoding the acquired tetracycline-specific efflux pump. In contrast, evolutionary adaptation by S. aureus to hypoxic conditions, which evolved in the absence of antibiotics through mutations affecting gyrB, was impeded by antibiotic treatment. Together, these data suggest that the horizontal acquisition of a new resistance mechanism is merely a starting point for the emergence of high-level resistance under antibiotic selection but that antibiotic treatment constrains pathogen adaptation to other important environmental selective forces such as hypoxia, which in turn could limit the survival of these highly resistant but poorly adapted genotypes after antibiotic treatment is ended.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Tetraciclina/farmacología , Hipoxia , Proteínas Bacterianas/genética
3.
Parasitology ; 144(10): 1356-1364, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28777067

RESUMEN

The Schistosoma mansoni cercarial elastase (SmCE) has previously been shown to be poorly immunogenic in mice. However, a minority of mice were able to produce antibodies against SmCE after multiple immunizations with crude preparations containing the enzyme. These mice were partially protected against challenge infections of S. mansoni. In the present study, we show that in contrast to the poor immunogenicity of the enzymatically active native form of SmCE derived from a crude preparation (cercarial transformation fluid), immunization of CBA/Ca mice with two enzymatically inactive forms, namely purified native SmCE or a recombinant SmCE fused to recombinant Schistosoma japonicum glutathione S-transferase (rSmCE-SjGST), after adsorption onto aluminum hydroxide adjuvant, induced specific anti-SmCE immunoglobulin G (IgG) in all mice within 2 weeks of the second immunization. The IgG antibody response to rSmCE-SjGST was mainly of the IgG1 subclass. These results suggest that inactive forms of the antigen could be used to obtain the optimum immunogenic effects as a vaccine candidate against schistosomiasis. Mice immunized with the rSmCE-SjGST on alum had smaller mean worm burdens and lower tissue egg counts when compared with adjuvant alone- and recombinant SjGST-injected controls. The native SmCE was antigenically cross-reactive with homologous enzymes of Schistosoma haematobium and Schistosoma margrebowiei.


Asunto(s)
Inmunogenicidad Vacunal , Elastasa Pancreática/genética , Proteínas Recombinantes/inmunología , Schistosoma mansoni/enzimología , Schistosoma mansoni/inmunología , Esquistosomiasis/inmunología , Animales , Cercarias/enzimología , Cercarias/genética , Cercarias/inmunología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos CBA , Elastasa Pancreática/metabolismo , Carga de Parásitos , Proteínas Recombinantes/genética , Schistosoma japonicum/enzimología , Schistosoma mansoni/genética , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis/sangre , Esquistosomiasis/parasitología , Esquistosomiasis mansoni/prevención & control
4.
Nucleic Acids Res ; 41(8): 4587-600, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23435232

RESUMEN

Bacteriophage T5 has a 120 kb double-stranded linear DNA genome encoding most of the genes required for its own replication. This lytic bacteriophage has a burst size of ∼500 new phage particles per infected cell, demonstrating that it is able to turn each infected bacterium into a highly efficient DNA manufacturing machine. To begin to understand DNA replication in this prodigious bacteriophage, we have characterized a putative helicase encoded by gene D2. We show that bacteriophage T5 D2 protein is the first viral helicase to be described with bipolar DNA unwinding activities that require the same core catalytic residues for unwinding in either direction. However, unwinding of partially single- and double-stranded DNA test substrates in the 3'-5' direction is more robust and can be distinguished from the 5'-3' activity by a number of features including helicase complex stability, salt sensitivity and the length of single-stranded DNA overhang required for initiation of helicase action. The presence of D2 in an early gene cluster, the identification of a putative helix-turn-helix DNA-binding motif outside the helicase core and homology with known eukaryotic and prokaryotic replication initiators suggest an involvement for this unusual helicase in DNA replication initiation.


Asunto(s)
ADN Helicasas/metabolismo , Fagos T/enzimología , Proteínas Virales/metabolismo , Adenosina Difosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , ADN/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN de Cadena Simple/metabolismo , Cloruro de Sodio/farmacología , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/genética
5.
Nucleic Acids Res ; 41(17): 8357-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821668

RESUMEN

Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.


Asunto(s)
Exodesoxirribonucleasas/química , Hidrolasas Diéster Fosfóricas/química , Biocatálisis , Calcio/química , ADN/química , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/química , Humanos , Magnesio/química , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/metabolismo , Potasio/química
6.
Nat Med ; 13(9): 1108-13, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17721547

RESUMEN

Cytokine hormones have a short plasma half-life and require frequent administration. For example, growth hormone replacement involves daily injections. In common with other cytokines, the extracellular domain of the growth hormone receptor circulates as a binding protein, which naturally prolongs the biological half-life of growth hormone. Here we have studied the biological actions of a ligand-receptor fusion of growth hormone and the extracellular domain of its receptor. The genetically engineered ligand-receptor fusion protein was purified from mammalian cell culture. In rats, the ligand-receptor fusion had a 300-times reduced clearance as compared to native growth hormone, and a single injection promoted growth for 10 d, far exceeding the growth seen after administration of native growth hormone. The ligand-receptor fusion forms a reciprocal, head-to-tail dimer that provides a reservoir of inactive hormone similar to the natural reservoir of growth hormone and its binding protein. In conclusion, a ligand-receptor fusion of cytokine to its extracellular receptor generates a potent, long-acting agonist with exceptionally slow absorption and elimination. This approach could be easily applied to other cytokines.


Asunto(s)
Hormona de Crecimiento Humana/química , Receptores de Somatotropina/química , Animales , Dimerización , Hormona del Crecimiento/química , Hormona del Crecimiento/fisiología , Humanos , Hipofisectomía , Ligandos , Modelos Moleculares , Proteínas Mutantes/química , Conformación Proteica , Ratas , Receptores de Somatotropina/agonistas , Receptores de Somatotropina/fisiología
7.
Nat Commun ; 15(1): 3814, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714680

RESUMEN

Little is known about SARS-CoV-2 infection risk in African countries with high levels of infection-driven immunity and low vaccine coverage. We conducted a prospective cohort study of 349 participants from 52 households in The Gambia between March 2021 and June 2022, with routine weekly SARS-CoV-2 RT-PCR and 6-monthly SARS-CoV-2 serology. Attack rates of 45% and 57% were seen during Delta and Omicron BA.1 waves respectively. Eighty-four percent of RT-PCR-positive infections were asymptomatic. Children under 5-years had a lower incidence of infection than 18-49-year-olds. One prior SARS-CoV-2 infection reduced infection risk during the Delta wave only, with immunity from ≥2 prior infections required to reduce the risk of infection with early Omicron lineage viruses. In an African population with high levels of infection-driven immunity and low vaccine coverage, we find high attack rates during SARS-CoV-2 waves, with a high proportion of asymptomatic infections and young children remaining relatively protected from infection.


Asunto(s)
Infecciones Asintomáticas , COVID-19 , SARS-CoV-2 , Humanos , Gambia/epidemiología , COVID-19/epidemiología , COVID-19/virología , COVID-19/inmunología , COVID-19/prevención & control , Incidencia , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Femenino , Preescolar , Masculino , Adolescente , Niño , Adulto , Infecciones Asintomáticas/epidemiología , Estudios Prospectivos , Persona de Mediana Edad , Adulto Joven , Lactante
8.
iScience ; 26(7): 107056, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37346049

RESUMEN

The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens.

9.
J Biol Chem ; 286(35): 30878-30887, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21734257

RESUMEN

Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a "two-metal ion mechanism" where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg(2+) ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg(2+) tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca(2+)]. At pH 9.3 (maximal rate conditions), Ca(2+) substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca(2+) and ultimately dependent on 1/[Ca(2+)](2). By varying the concentration of viable metal cofactor, Ca(2+) ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible.


Asunto(s)
Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Iones , Magnesio/química , Metales/química , Mutación , Sitios de Unión , Biofisica/métodos , Calcio/química , Catálisis , Dominio Catalítico , ADN/química , Enzimas/química , Cinética , Conformación Molecular , Fosfatos/química , Unión Proteica , Programas Informáticos
11.
J Exp Med ; 202(10): 1319-25, 2005 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-16301741

RESUMEN

The coevolution of humans and infectious agents has exerted selective pressure on the immune system to control potentially lethal infections. Correspondingly, pathogens have evolved with various strategies to modulate and circumvent the host's innate and adaptive immune response. Schistosoma species are helminth parasites with genes that have been selected to modulate the host to tolerate chronic worm infections, often for decades, without overt morbidity. The modulation of immunity by schistosomes has been shown to prevent a range of immune-mediated diseases, including allergies and autoimmunity. Individual immune-modulating schistosome molecules have, therefore, therapeutic potential as selective manipulators of the immune system to prevent unrelated diseases. Here we show that S. mansoni eggs secrete a protein into host tissues that binds certain chemokines and inhibits their interaction with host chemokine receptors and their biological activity. The purified recombinant S. mansoni chemokine binding protein (smCKBP) suppressed inflammation in several disease models. smCKBP is unrelated to host proteins and is the first described chemokine binding protein encoded by a pathogenic human parasite and may have potential as an antiinflammatory agent.


Asunto(s)
Quimiocinas/antagonistas & inhibidores , Quimiocinas/metabolismo , Proteínas del Helminto/metabolismo , Mediadores de Inflamación/metabolismo , Schistosoma mansoni/metabolismo , Esquistosomiasis mansoni/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas del Helminto/genética , Humanos , Intestinos/parasitología , Intestinos/patología , Hígado/parasitología , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Óvulo/metabolismo , Proteómica , Schistosoma mansoni/genética
12.
medRxiv ; 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34268521

RESUMEN

BACKGROUND: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. METHODS: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust (STH) were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99·47%, specificity 99·56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. FINDINGS: As of 12th June 2020, 24·4% (n=311/1275) HCWs were seropositive. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. INTERPRETATION: HCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals. RESEARCH IN CONTEXT: Evidence before this study: We searched PubMed for studies published up to March 6th 2021, using the terms "COVID", "SARS-CoV-2", "seroprevalence", and "healthcare workers", and in addition for articles of antibody titres in different age groups against coronaviruses using "coronavirus", "SARS-CoV-2, "antibody", "antibody tires", "COVID" and "age". We included studies that used serology to estimate prevalence in healthcare workers. SARS-CoV-2 seroprevalence has been shown to be greater in healthcare workers working on acute medical units or within domestic services. Antibody levels against seasonal coronaviruses, SARS-CoV and SARS-CoV-2 were found to be higher in older adults, and patients who were hospitalised.Added value of this study: In this healthcare worker seroprevalence modelling study at a large NHS foundation trust, we confirm that those working on acute medical units, COVID-19 "Red Zones" and within domestic services are most likely to be seropositive. Furthermore, we show that physiotherapists and occupational therapists have an increased risk of COVID-19 infection. We also confirm that antibody titres are greater in older individuals, even in the context of non-hospitalised cases. Importantly, we demonstrate that this can result in age-specific sensitivity in serological assays, where lower antibody titres in younger individuals results in lower assay sensitivity.Implications of all the available evidence: There are distinct occupational roles and locations in hospitals where the risk of COVID-19 infection to healthcare workers is greatest, and this knowledge should be used to prioritise infection prevention control and other measures to protect healthcare workers. Serological assays may have different sensitivity profiles across different age groups, especially if assay validation was undertaken using samples from older and/or hospitalised patients, who tend to have higher antibody titres. Future seroprevalence studies should consider adjusting for age-specific assay sensitivities to estimate true seroprevalence rates.

13.
Wellcome Open Res ; 6: 220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35600250

RESUMEN

Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. We developed an in-house ELISA for testing participant serum for SARS-CoV-2 IgG and IgA reactivity against Spike and Nucleoprotein. Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: Our in-house assay had a sensitivity of 99·47% and specificity of 99·56%. We found that 24·4% (n=311/1275) of HCWs were seropositive as of 12th June 2020. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions:  HCWs in acute medical units and those working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more severe COVID-19 cases.

14.
Biochemistry ; 49(37): 8085-93, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20698567

RESUMEN

During replication and repair flap endonucleases (FENs) catalyze endonucleolytic and exonucleolytic (EXO) DNA hydrolyses. Altering the leaving group pK(a), by replacing the departing nucleoside with analogues, had minimal effect on k(cat)/K(M) in a T5FEN-catalyzed EXO reaction, producing a very low Brønsted coefficient, ß(lg). Investigation of the viscosity dependence of k(cat)/K(M) revealed that reactions of EXO substrates are rate limited by diffusional encounter of enzyme and substrate, explaining the small ß(lg). However, the maximal single turnover rate of the FEN EXO reaction also yields a near zero ß(lg). A low ß(lg) was also observed when evaluating k(cat)/K(M) for D201I/D204S FEN-catalyzed reactions, even though these reactions were not affected by added viscogen. But an active site K83A mutant produced a ß(lg) = -1.2 ± 0.10, closer to the value observed for solution hydrolysis of phosphate diesters. The pH-maximal rate profiles of the WT and K83A FEN reactions both reach a maximum at high pH and do not support an explanation of the data that involves catalysis of leaving group departure by Lys 83 functioning as a general acid. Instead, a rate-limiting physical step, such as substrate unpairing or helical arch ordering, that occurs after substrate association must kinetically hide an inherent large ß(lg). It is suggested that K83 acts as an electrostatic catalyst that stabilizes the transition state for phosphate diester hydrolysis. When K83 is removed from the active site, chemistry becomes rate limiting and the leaving group sensitivity of the FEN-catalyzed reaction is revealed.


Asunto(s)
Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Catálisis , Exodesoxirribonucleasas , Endonucleasas de ADN Solapado/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Lisina , Viscosidad
15.
Clin Sci (Lond) ; 119(11): 483-91, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20597861

RESUMEN

A fundamental concern for all new biological therapeutics is the possibility of inducing an immune response. We have recently demonstrated that an LR-fusion (ligand-receptor fusion) of growth hormone generates a potent long-acting agonist; however, the immunogenicity and toxicity of these molecules have not been tested. To address these issues, we have designed molecules with low potential as immunogens and undertaken immunogenicity and toxicology studies in Macaca fascicularis and pharmacokinetic and pharmacodynamic studies in rats. Two variants of the LR-fusion, one with a flexible linker (GH-LRv2) and the other without (GH-LRv3), were tested. Comparison was made with native human GH (growth hormone). GH-LRv2 and GH-LRv3 demonstrated similar pharmacokinetics in rats, showing reduced clearance compared with native GH and potent agonist activity with respect to body weight gain in a hypophysectomized rat model. In M. fascicularis, a low level of antibodies to GH-LRv2 was found in one sample, but there was no other evidence of any immunogenic response to the other fusion protein. There were no toxic effects and specifically no changes in histology at injection sites after two repeated administrations. The pharmacokinetic profiles in monkeys confirmed long half-lives for both GH-LRv2 and GH-LRv3 representing exceptionally delayed clearance over rhGH (recombinant human GH). The results suggest that repeated administration of a GH LR-fusion is safe, non-toxic, and the pharmacokinetic profile suggests that two to three weekly administrations is a potential therapeutic regimen for humans.


Asunto(s)
Hormona del Crecimiento/inmunología , Receptores de Somatotropina/inmunología , Proteínas Recombinantes de Fusión/inmunología , Animales , Formación de Anticuerpos , Evaluación Preclínica de Medicamentos/métodos , Hormona del Crecimiento/sangre , Hormona del Crecimiento/toxicidad , Ligandos , Macaca fascicularis , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Somatotropina/sangre , Proteínas Recombinantes de Fusión/sangre , Proteínas Recombinantes de Fusión/toxicidad
16.
Biochem J ; 418(2): 285-92, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19000038

RESUMEN

FENs (flap endonucleases) play essential roles in DNA replication, pivotally in the resolution of Okazaki fragments. In eubacteria, DNA PolI (polymerase I) contains a flap processing domain, the N-terminal 5'-->3' exonuclease. We present evidence of paralogous FEN-encoding genes present in many eubacteria. Two distinct classes of these independent FEN-encoding genes exist with four groups of eubacteria, being identified based on the number and type of FEN gene encoded. The respective proteins possess distinct motifs hallmarking their differentiation. Crucially, based on primary sequence and predicted secondary structural motifs, we reveal key differences at their active sites. These results are supported by biochemical characterization of two family members--ExoIX (exonuclease IX) from Escherichia coli and SaFEN (Staphylococcus aureus FEN). These proteins displayed marked differences in their ability to process a range of branched and linear DNA structures. On bifurcated substrates, SaFEN exhibited similar substrate specificity to previously characterized FENs. In quantitative exonuclease assays, SaFEN maintained a comparable activity with that reported for PolI. However, ExoIX showed no observable enzymatic activity. A threaded model is presented for SaFEN, demonstrating the probable interaction of this newly identified class of FEN with divalent metal ions and a branched DNA substrate. The results from the present study provide an intriguing model for the cellular role of these FEN sub-classes and illustrate the evolutionary importance of processing aberrant DNA, which has led to their maintenance alongside DNA PolI in many eubacteria.


Asunto(s)
Sustitución de Aminoácidos/fisiología , Bacterias/enzimología , Dominio Catalítico/genética , Endonucleasas de ADN Solapado/clasificación , Secuencia de Aminoácidos , Bacterias/genética , Dominio Catalítico/fisiología , Clonación Molecular , ADN Polimerasa I/química , ADN Polimerasa I/genética , Escherichia coli/enzimología , Escherichia coli/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Filogenia , Homología de Secuencia , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Nat Struct Mol Biol ; 11(5): 450-6, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15077103

RESUMEN

Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.


Asunto(s)
Cationes Bivalentes/metabolismo , Endonucleasas/metabolismo , Metales/metabolismo , Secuencia de Bases , ADN/metabolismo , Cartilla de ADN , Hidrólisis , Modelos Moleculares , Especificidad por Sustrato , Termodinámica
18.
Nucleic Acids Res ; 35(12): 4094-102, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17567612

RESUMEN

The flap endonucleases (FENs) participate in a wide range of processes involving the structure-specific cleavage of branched nucleic acids. They are also able to hydrolyse DNA and RNA substrates from the 5'-end, liberating mono-, di- and polynucleotides terminating with a 5' phosphate. Exonuclease IX is a paralogue of the small fragment of Escherichia coli DNA polymerase I, a FEN with which it shares 66% similarity. Here we show that both glutathione-S-transferase-tagged and native recombinant ExoIX are able to interact with the E. coli single-stranded DNA binding protein, SSB. Immobilized ExoIX was able to recover SSB from E. coli lysates both in the presence and absence of DNA. In vitro cross-linking studies carried out in the absence of DNA showed that the SSB tetramer appears to bind up to two molecules of ExoIX. Furthermore, we found that a 3'-5' exodeoxyribonuclease activity previously associated with ExoIX can be separated from it by extensive liquid chromatography. The associated 3'-5' exodeoxyribonuclease activity was excised from a 2D gel and identified as exonuclease III using matrix-assisted laser-desorption ionization mass spectrometry.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Exodesoxirribonucleasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Reactivos de Enlaces Cruzados , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/aislamiento & purificación
19.
J Mol Biol ; 371(1): 34-48, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17559871

RESUMEN

Flap endonucleases (FENs) catalyse the exonucleolytic hydrolysis of blunt-ended duplex DNA substrates and the endonucleolytic cleavage of 5'-bifurcated nucleic acids at the junction formed between single and double-stranded DNA. The specificity and catalytic parameters of FENs derived from T5 bacteriophage and Archaeoglobus fulgidus were studied with a range of single oligonucleotide DNA substrates. These substrates contained one or more hairpin turns and mimic duplex, 5'-overhanging duplex, pseudo-Y, nicked DNA, and flap structures. The FEN-catalysed reaction properties of nicked DNA and flap structures possessing an extrahelical 3'-nucleotide (nt) were also characterised. The phage enzyme produced multiple reaction products of differing length with all the substrates tested, except when the length of duplex DNA downstream of the reaction site was truncated. Only larger DNAs containing two duplex regions are effective substrates for the archaeal enzyme and undergo reaction at multiple sites when they lack a 3'-extrahelical nucleotide. However, a single product corresponding to reaction 1 nt into the double-stranded region occurred with A. fulgidus FEN when substrates possessed a 3'-extrahelical nt. Steady-state and pre-steady-state catalytic parameters reveal that the phage enzyme is rate-limited by product release with all the substrates tested. Single-turnover maximal rates of reaction are similar with most substrates. In contrast, turnover numbers for T5FEN decrease as the size of the DNA substrate is increased. Comparison of the catalytic parameters of the A. fulgidus FEN employing flap and double-flap substrates indicates that binding interactions with the 3'-extrahelical nucleotide stabilise the ground state FEN-DNA interaction, leading to stimulation of comparative reactions at DNA concentrations below saturation with the single flap substrate. Maximal multiple turnover rates of the archaeal enzyme with flap and double flap substrates are similar. A model is proposed to account for the varying specificities of the two enzymes with regard to cleavage patterns and substrate preferences.


Asunto(s)
Proteínas Arqueales/metabolismo , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Archaeoglobus fulgidus/enzimología , Sitios de Unión , Catálisis , ADN/química , ADN/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
20.
Sci Rep ; 6: 39414, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28009009

RESUMEN

Helicases catalyze the unwinding of double-stranded nucleic acids where structure and phosphate backbone contacts, rather than nucleobase sequence, usually determines substrate specificity. We have expressed and purified a putative helicase encoded by the D10 gene of bacteriophage T5. Here we report that this hitherto uncharacterized protein possesses branch migration and DNA unwinding activity. The initiation of substrate unwinding showed some sequence dependency, while DNA binding and DNA-dependent ATPase activity did not. DNA footprinting and purine-base interference assays demonstrated that D10 engages these substrates with a defined polarity that may be established by protein-nucleobase contacts. Bioinformatic analysis of the nucleotide databases revealed genes predicted to encode proteins related to D10 in archaebacteria, bacteriophages and in viruses known to infect a range of eukaryotic organisms.


Asunto(s)
Fagos T/genética , Proteínas Virales/genética , Adenosina Trifosfatasas/genética , Archaea/genética , Biología Computacional/métodos , ADN/genética , Huella de ADN/métodos , ADN Helicasas/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Nucleótidos/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA