Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Insect Mol Biol ; 33(4): 362-371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38450861

RESUMEN

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.


Asunto(s)
Aedes , Wolbachia , alfa-Manosidasa , Animales , Aedes/microbiología , Aedes/virología , Aedes/genética , Wolbachia/fisiología , alfa-Manosidasa/metabolismo , alfa-Manosidasa/genética , Virus del Dengue/fisiología , Arbovirus/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Femenino , Infecciones por Arbovirus/transmisión , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sistemas CRISPR-Cas
2.
Insect Mol Biol ; 31(3): 356-368, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35112745

RESUMEN

One approach to control dengue virus transmission is the symbiont Wolbachia, which limits viral infection in mosquitoes. Despite plans for its widespread use in Aedes aegypti, Wolbachia's mode of action remains poorly understood. Many studies suggest that the mechanism is likely multifaceted, involving aspects of immunity, cellular stress and nutritional competition. A previous study from our group used artificial selection to identify a new mosquito candidate gene related to viral blocking; alpha-mannosidase-2a (alpha-Mann-2a) with a predicted role in protein glycosylation. Protein glycosylation pathways tend to be involved in complex host-viral interactions; however, the function of alpha-mannosidases has not been described in mosquito-virus interactions. We examined alpha-Mann-2a expression in response to virus and Wolbachia infections and whether reduced gene expression, caused by RNA interference, affected viral loads. We show that dengue virus (DENV) infection affects the expression of alpha-Mann-2a in a tissue- and time-dependent manner, whereas Wolbachia infection had no effect. In the midgut, DENV prevalence increased following knockdown of alpha-Mann-2a expression in Wolbachia-free mosquitoes, suggesting that alpha-Mann-2a interferes with infection. Expression knockdown had the same effect on the togavirus chikungunya virus, indicating that alpha-Mann-2a may have broad antivirus effects in the midgut. Interestingly, we were unable to knockdown the expression in Wolbachia-infected mosquitoes. We also provide evidence that alpha-Mann-2a may affect the transcriptional level of another gene predicted to be involved in viral blocking and cell adhesion; cadherin87a. These data support the hypothesis that glycosylation and adhesion pathways may broadly be involved in viral infection in Ae. aegypti.


Asunto(s)
Aedes , Virus Chikungunya , Virus del Dengue , Virosis , Wolbachia , Aedes/genética , Animales , Virus del Dengue/genética , Mosquitos Vectores/genética , Wolbachia/fisiología
3.
J Exp Bot ; 72(13): 4938-4948, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33939808

RESUMEN

During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII-PSI-LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII-PSI-LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.


Asunto(s)
Oryza , Clorofila , Complejos de Proteína Captadores de Luz/metabolismo , Oryza/genética , Oryza/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
4.
Plant Biotechnol J ; 16(6): 1186-1200, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193665

RESUMEN

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A ß-carotene. In this study, ß-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 µg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-ß-carotene, the most nutritionally efficacious carotenoid. ß-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in ß-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between ß-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between ß-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.


Asunto(s)
Biofortificación , Metabolismo de los Hidratos de Carbono , Carotenoides/metabolismo , Manihot/química , Raíces de Plantas/química , Ácido Abscísico/metabolismo , Almacenamiento de Alimentos , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Manihot/genética , Manihot/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/química , Almidón/biosíntesis , Transferasas/genética
5.
J Insect Sci ; 18(5)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30346622

RESUMEN

Glutathione-S-transferases (GST) comprise a multifunctional protein superfamily, which plays important roles as detoxifiers and antioxidants in insects. The GST in Asian corn borer has not been previously characterized. In this study, we cloned, characterized, and expressed the complete GST genes from the midgut of Asian corn borer. Furthermore, we designed htL4440-OfGST vector to exploit this gene for RNA interference (RNAi) strategy to control this pest. A complete GST cDNA sequence in Asian corn borer was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends technology. The gene was 887bp in length and contained a 705bp open reading frame and 5' UTR and 3' UTR lengths of 89 and 93bp, respectively. The putative sequence encoded a putative 234 amino acid residue peptide and had a predicted molecular weight of ~26kDa. The GST protein of Asian corn borer is hydrophilic and may have a 30 amino acid signal peptide with a cleavage site between L30 and K31. A recombination vector pET28a-OfGST was constructed for purification and antibody preparation. Western blotting analysis showed that this protein reached the maximum expression level around 24 h in Asian corn borer larvae fed the plant toxin 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. A second vector, htL4440-OfGST, was constructed to generate the dsRNA of the GST gene. A larval feeding bioassay showed that the expressed dsRNA significantly reduced the detoxification ability of Asian corn borer larvae and increased mortality rate up to 54%. Our data indicated that GST plays very important roles in detoxifying in Asian corn borer and can be used as an RNAi method to control this pest in the field.


Asunto(s)
Glutatión Transferasa/genética , Control de Insectos/métodos , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Filogenia , ARN Bicatenario/genética
6.
J Math Biol ; 74(1-2): 43-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27139803

RESUMEN

We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.


Asunto(s)
Modelos Biológicos , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Simulación por Computador , Transferencia de Energía , Luz , Procesos Estocásticos
7.
Front Plant Sci ; 11: 505, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499795

RESUMEN

One of the major constraints limiting biomass production in autotrophs is the low thermodynamic efficiency of photosynthesis, ranging from 1 to 4%. Given the absorption spectrum of photosynthetic pigments and the spectral distribution of sunlight, photosynthetic efficiencies as high as 11% are possible. It is well-recognized that the greatest thermodynamic inefficiencies in photosynthesis are associated with light absorption and conversion of excited states into chemical energy. This is due to the fact that photosynthesis light saturates at one quarter full sunlight intensity in plants resulting in the dissipation of excess energy as heat, fluorescence and through the production of damaging reactive oxygen species. Recently, it has been demonstrated that it is possible to adjust the size of the light harvesting antenna over a broad range of optical cross sections through targeted reductions in chlorophyll b content, selectively resulting in reductions of the peripheral light harvesting antenna size, especially in the content of Lhcb3 and Lhcb6. We have examined the impact of alterations in light harvesting antenna size on the amplitude of photoprotective activity and the evolutionary fitness or seed production in Camelina grown at super-saturating and sub-saturating light intensities to gain an understanding of the driving forces that lead to the selection for light harvesting antenna sizes best fit for a range of light intensities. We demonstrate that plants having light harvesting antenna sizes engineered for the greatest photosynthetic efficiency also have the greatest capacity to mitigate high light stress through non-photochemical quenching and reduction of reactive oxygen associated damage. Under sub-saturating growth light intensities, we demonstrate that the optimal light harvesting antenna size for photosynthesis and seed production is larger than that for plants grown at super-saturating light intensities and is more similar to the antenna size of wild-type plants. These results suggest that the light harvesting antenna size of plants is designed to maximize fitness under low light conditions such as occurs in shaded environments and in light competition with other plants.

8.
Mol Plant Microbe Interact ; 21(9): 1184-92, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18700823

RESUMEN

Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.


Asunto(s)
Proteínas Bacterianas/fisiología , Flavinas/farmacología , Percepción de Quorum/efectos de los fármacos , Riboflavina/farmacología , Transactivadores/fisiología , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacología , Animales , Proteínas Bacterianas/metabolismo , Sitios de Unión , Chlamydomonas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Flavinas/química , Flavinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Percepción de Quorum/fisiología , Riboflavina/química , Riboflavina/metabolismo , Transactivadores/metabolismo , Complejo Vitamínico B/química , Complejo Vitamínico B/metabolismo , Complejo Vitamínico B/farmacología
9.
Ecotoxicol Environ Saf ; 71(1): 1-15, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18599121

RESUMEN

Environmental pollution by organic compounds and metals became extensive as mining and industrial activities increased in the 19th century and have intensified since then. Environmental pollutants originating from diverse anthropogenic sources have been known to possess adverse values capable of degrading the ecological integrity of marine environment. The consequences of anthropogenic contamination of marine environments have been ignored or poorly characterized with the possible exception of coastal and estuarine waters close to sewage outlets. Monitoring the impact of pollutants on aquatic life forms is challenging due to the differential sensitivities of organisms to a given pollutant, and the inability to assess the long-term effects of persistent pollutants on the ecosystem as they are bio-accumulated at higher trophic levels. Marine microalgae are particularly promising indicator species for organic and inorganic pollutants since they are typically the most abundant life forms in aquatic environments and occupy the base of the food chain. We review the effects of pollutants on the cellular biochemistry of microalgae and the biochemical mechanisms that microalgae use to detoxify or modify pollutants. In addition, we evaluate the potential uses of microalgae as bioindicator species as an early sentinel in polluted sites.


Asunto(s)
Biomarcadores/metabolismo , Eucariontes/efectos de los fármacos , Eucariontes/metabolismo , Contaminación Química del Agua/efectos adversos , Metales , Compuestos Orgánicos/efectos adversos
10.
Mycologia ; 110(3): 482-493, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29969379

RESUMEN

Aflatoxins are toxic secondary metabolites produced by Aspergillus flavus and a few other closely related species of Aspergillus. These highly toxigenic and carcinogenic mycotoxins contaminate global food and feed supplies, posing widespread health risks to humans and domestic animals. Field application of nonaflatoxigenic strains of A. flavus to compete against aflatoxigenic strains has emerged as one of the best management practices for reducing aflatoxins contamination, yielding successful commercial products for corn, cotton seed, and peanuts. In this study, we sequenced the genome and transcriptome of atoxigenic (does not produce aflatoxin or cyclopiazonic acid) A. flavus strain WRRL 1519 isolated from a tree nut orchard to define the genetic characteristics of the strain in relation to aflatoxigenic and other nonaflatoxigenic A. flavus strains. WRRL 1519 strain was similar to other strains in size (38.0 Mb), GC content (47.2%), number of predicted secondary metabolite gene clusters (46), and number of putative proteins (12 121). About 87.4% of the predicted proteome had high shared identity with protein sequences derived from other A. flavus genomes. However, the atoxigenic A. flavus strain WRRL 1519 had deletions, or low shared identity, for many genes in the clusters required for aflatoxins and cyclopiazonic acid (CPA) synthesis. Over half of the aflatoxin synthesis gene cluster was missing, and none of the components of the CPA gene cluster were identified with high sequence similarity. Importantly, the strain appeared to maintain functional sequences of several genes thought to be required for high infectivity. Since the ability to grow on target crop is an important attribute for a successful biocontrol agent, these results indicate that the nonaflatoxigenic A. flavus strain WRRL 1519 would be a good candidate as a biocontrol agent for reducing aflatoxin and CPA accumulation in high-value nut crops.


Asunto(s)
Aspergillus flavus/genética , Genoma Fúngico/genética , Aflatoxinas/análisis , Aflatoxinas/genética , Aspergillus flavus/metabolismo , Composición de Base , Secuencia de Bases , Agentes de Control Biológico , Tamaño del Genoma , Indoles/análisis , Familia de Multigenes/genética , Nueces/microbiología , Proteómica , Metabolismo Secundario/genética , Eliminación de Secuencia , Transcriptoma
11.
Front Plant Sci ; 8: 220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286506

RESUMEN

Cassava (Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both ß-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth.

12.
Methods Mol Biol ; 344: 13-24, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17033047

RESUMEN

During the last three years the generation of stably transformed cassava plants having value-added traits has become a reality. Currently, two Agrobacterium-mediated transformation systems are routinely used to engineer cassava. These systems use either somatic embryos or friable embryogenic calli. This paper presents detailed protocols for the transformation of cassava using primary somatic embryos. The effects of explant types, tissue culture conditions, and bacterial and plasmid related factors on transformation efficiency are discussed.


Asunto(s)
Agrobacterium tumefaciens/genética , Ingeniería Genética , Manihot/genética , Transformación Genética , Agrobacterium tumefaciens/citología , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Medios de Cultivo , Germinación , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteómica , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Técnicas de Cultivo de Tejidos
13.
Plant Biotechnol J ; 2(1): 37-43, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17166141

RESUMEN

Cassava (Manihot esculenta, Crantz) roots are the primary source of calories for more than 500 million people, the majority of whom live in the developing countries of Africa. Cassava leaves and roots contain potentially toxic levels of cyanogenic glycosides. Consumption of residual cyanogens (linamarin or acetone cyanohydrin) in incompletely processed cassava roots can cause cyanide poisoning. Hydroxynitrile lyase (HNL), which catalyses the conversion of acetone cyanohydrin to cyanide, is expressed predominantly in the cell walls and laticifers of leaves. In contrast, roots have very low levels of HNL expression. We have over-expressed HNL in transgenic cassava plants under the control of a double 35S CaMV promoter. We show that HNL activity increased more than twofold in leaves and 13-fold in roots of transgenic plants relative to wild-type plants. Elevated HNL levels were correlated with substantially reduced acetone cyanohydrin levels and increased cyanide volatilization in processed or homogenized roots. Unlike acyanogenic cassava, transgenic plants over-expressing HNL in roots retain the herbivore deterrence of cyanogens while providing a safer food product.

14.
Photosynth Res ; 80(1-3): 411-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-16328837

RESUMEN

Over a decade ago (1988), John Boynton and colleagues successfully transformed the chloroplast genome of chlamydomonas for the first time by complementation of a chloroplast deletion mutant. Since the first demonstration of chloroplast transformation the function and structure of many chloroplast encoded subunits of the photosynthetic apparatus has been characterized by site-directed mutagenesis. With the completion of the sequencing of the Chlamydomonas chloroplast genome the genetic tools are now in hand to characterize structure-function relationships for each of the chloroplast-encoded proteins of the photosynthetic apparatus.

15.
Biotechnol Biofuels ; 6(1): 150, 2013 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-24139286

RESUMEN

Due to the growing need to provide alternatives to fossil fuels as efficiently, economically, and sustainably as possible there has been growing interest in improved biofuel production systems. Biofuels produced from microalgae are a particularly attractive option since microalgae have production potentials that exceed the best terrestrial crops by 2 to 10-fold. In addition, autotrophically grown microalgae can capture CO2 from point sources reducing direct atmospheric greenhouse gas emissions. The enhanced biomass production potential of algae is attributed in part to the fact that every cell is photosynthetic. Regardless, overall biological energy capture, conversion, and storage in microalgae are inefficient with less than 8% conversion of solar into chemical energy achieved. In this review, we examine the thermodynamic and kinetic constraints associated with the autotrophic conversion of inorganic carbon into storage carbohydrate and oil, the dominant energy storage products in Chlorophytic microalgae. We discuss how thermodynamic restrictions including the loss of fixed carbon during acetyl CoA synthesis reduce the efficiency of carbon accumulation in lipids. In addition, kinetic limitations, such as the coupling of proton to electron transfer during plastoquinone reduction and oxidation and the slow rates of CO2 fixation by Rubisco reduce photosynthetic efficiency. In some cases, these kinetic limitations have been overcome by massive increases in the numbers of effective catalytic sites, e.g. the high Rubisco levels (mM) in chloroplasts. But in other cases, including the slow rate of plastoquinol oxidation, there has been no compensatory increase in the abundance of catalytically limiting protein complexes. Significantly, we show that the energetic requirements for producing oil and starch relative to the recoverable energy stored in these molecules are very similar on a per carbon basis. Presently, the overall rates of starch and lipid synthesis in microalgae are very poorly characterized. Increased understanding of the kinetic constraints of lipid and starch synthesis, accumulation and turnover would facilitate the design of improved biomass production systems.

16.
Front Plant Sci ; 3: 171, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22993514

RESUMEN

We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants.

17.
Curr Opin Biotechnol ; 23(2): 257-64, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22226461

RESUMEN

Over two hundred and fifty million Africans rely on the starchy root crop cassava (Manihot esculenta) as their primary source of calories. Cassava roots, however, have the lowest protein:energy ratio of all the world's major staple crops. Furthermore, a typical cassava-based diet provides less than 10-20% of the required amounts of iron, zinc, vitamin A and vitamin E. The BioCassava Plus program employed modern biotechnologies to improve the health of Africans through development and delivery of novel cassava germplasm with increased nutrient levels. Here we describe the development of molecular strategies and their outcomes to meet minimum daily allowances for protein and iron in cassava based diets. We demonstrate that cyanogens play a central role in cassava nitrogen metabolism and that strategies employed to increase root protein levels result in reduced cyanogen levels in roots. We also demonstrate that enhancing root iron uptake has an impact on the expression of genes that regulate iron homeostasis in multiple tissues. These observations demonstrate the complex metabolic interactions involved in enhancing targeted nutrient levels in plants and identify potential new strategies for further enhancing nutrient levels in cassava.


Asunto(s)
Proteínas en la Dieta , Alimentos Fortificados , Hierro de la Dieta , Manihot/química , Plantas Modificadas Genéticamente/química , Humanos , Manihot/genética , Manihot/crecimiento & desarrollo , Raíces de Plantas/química , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Vitamina A/análisis , Vitamina E/análisis , Zinc/análisis
18.
J Agric Food Chem ; 60(15): 3861-6, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22458891

RESUMEN

Cassava is a root crop that serves as a primary caloric source for many African communities despite its low content of ß-carotene (ßC). Carotenoid content of roots from wild type (WT) and three transgenic lines with high ßC were compared after cooking and preparation of nonfermented and fermented flours according to traditional African methods. The various methods of processing all decreased ßC content per gram dry weight regardless of genotype. The greatest loss of ßC occurred during preparation of gari (dry fermentation followed by roasting) from WT and transgenic lines. The quantities of ßC in cooked transgenic cassava root that partitioned into mixed micelles during in vitro digestion and transported into Caco-2 cells were significantly greater than those for identically processed WT root. These results suggest that transgenic high ßC cassava will provide individuals with greater quantities of bioaccessible ßC.


Asunto(s)
Culinaria/métodos , Manihot/química , Raíces de Plantas/química , Plantas Modificadas Genéticamente/química , beta Caroteno/análisis , Células CACO-2 , Humanos , Manihot/genética , Manihot/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , beta Caroteno/metabolismo
19.
J Microbiol Methods ; 84(2): 189-93, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21129419

RESUMEN

Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating extracellular protease production in V. harveyi.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Péptido Hidrolasas/biosíntesis , Percepción de Quorum , Vibrio/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas Bacterianas/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Homoserina/análogos & derivados , Homoserina/metabolismo , Lactonas/metabolismo , Vibrio/genética
20.
Chemosphere ; 83(9): 1249-54, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21458021

RESUMEN

As one of the most pervasive environmental problems, Hg pollution in sediment is particularly difficult to remediate because it cannot be decomposed. The application of ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii (C. reinhardtii), a green alga) for the removal of Hg from model and contaminated sediments (Al(2)O(3), α-HgS, and PACS-2 marine sediment) was investigated in this study. Ultrasound was found to enhance Hg release from Al(2)O(3), α-HgS, and PACS-2 marine sediment into the aqueous phase compared to mechanical shaking. A transgenic C. reinhardtii (2AMT-2) expressing a plasmamembrane-anchored metallothionein polymer effectively recovered Hg(II) released into the aqueous phase by sonication over a broad pH range from 2.0 to 9.0. The results showed that this combined technique of ultrasound and alga biomass (2AMT-2) engineered for enhanced metal recovery was effective to remove Hg from solids and sediments, especially from Al(2)O(3) and α-HgS with no natural organic matter. The results of this study are discussed with respect to the development of in situ remediation techniques for Hg-contaminated sediments.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Sedimentos Geológicos/química , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Óxido de Aluminio/química , Biodegradación Ambiental , Ondas de Choque de Alta Energía , Mercurio/análisis , Mercurio/química , Organismos Modificados Genéticamente/metabolismo , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA