Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 62(7): 1199-1214, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34015110

RESUMEN

The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.


Asunto(s)
Zea mays/genética , Pared Celular/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica , Frecuencia de los Genes , Metabolómica , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Zea mays/anatomía & histología
2.
Plant Cell ; 30(12): 2922-2942, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30413654

RESUMEN

Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Zea mays/genética , Desequilibrio de Ligamiento/genética , Programas Informáticos
3.
Proc Natl Acad Sci U S A ; 114(12): 3204-3209, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270601

RESUMEN

Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal RNA preservation during prolonged nutrient starvation conditions. Single-cell-level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.


Asunto(s)
Hibernación , Pseudomonas aeruginosa/fisiología , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
4.
Vet Clin North Am Equine Pract ; 36(2): 183-193, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32534852

RESUMEN

High-quality genomic tools have been integral in understanding genomic architecture and function in the modern-day horse. The equine genetics community has a long tradition of pooling resources to develop genomic tools. Since the equine genome was sequenced in 2006, several iterations of high throughput genotyping arrays have been developed and released, enabling rapid and cost-effective genotyping. This review highlights the design considerations of each iteration, focusing on data available during development and outlining considerations in selecting the genetic variants included on each array. Additionally, we outline recent applications of equine genotyping arrays as well as future prospects and applications.


Asunto(s)
Técnicas de Genotipaje/veterinaria , Caballos/genética , Animales , Genómica , Genotipo , Enfermedades de los Caballos/genética , Polimorfismo de Nucleótido Simple
5.
BMC Genomics ; 19(1): 581, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30071827

RESUMEN

BACKGROUND: Severe equine asthma, also known as recurrent airway obstruction (RAO), is a debilitating, performance limiting, obstructive respiratory condition in horses that is phenotypically similar to human asthma. Past genome wide association studies (GWAS) have not discovered coding variants associated with RAO, leading to the hypothesis that causative variant(s) underlying the signals are likely non-coding, regulatory variant(s). Regions of the genome containing variants that influence the number of expressed RNA molecules are expression quantitative trait loci (eQTLs). Variation associated with RAO that also regulates a gene's expression in a disease relevant tissue could help identify candidate genes that influence RAO if that gene's expression is also associated with RAO disease status. RESULTS: We searched for eQTLs by analyzing peripheral blood mononuclear cells (PBMCs) from two half-sib families and one unrelated cohort of 82 European Warmblood horses that were previously treated in vitro with: no stimulation (MCK), lipopolysaccharides (LPS), recombinant cyathostomin antigen (RCA), and hay-dust extract (HDE). We identified high confidence eQTLs that did not violate linear modeling assumptions and were not significant due to single outlier individuals. We identified a mean of 4347 high confidence eQTLs in four treatments of PBMCs, and discovered two trans regulatory hotspots regulating genes involved in related biological pathways. We corroborated previous RAO associated single nucleotide polymorphisms (SNPs), and increased the resolution of past GWAS by analyzing 1,056,195 SNPs in 361 individuals. We identified four RAO-associated SNPs that only regulate gene expression of dexamethasone-induced protein (DEXI), however we found no significant association between DEXI gene expression and presence of RAO. CONCLUSIONS: Thousands of genetic variants regulate gene expression in PBMCs of European Warmblood horses in cis and trans. Most high confidence eSNPs are significantly enriched near the transcription start sites of their target genes. Two trans regulatory hotspots on chromosome 11 and 13 regulate many genes involved in transmembrane cell signaling and neurological development respectively when PBMCs are treated with HDE. None of the top fifteen RAO associated SNPs strongly influence disease status through gene expression regulation.


Asunto(s)
Asma/veterinaria , Perfilación de la Expresión Génica/veterinaria , Enfermedades de los Caballos/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Asma/inducido químicamente , Asma/genética , Polvo , Regulación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/veterinaria , Enfermedades de los Caballos/inducido químicamente , Caballos , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/efectos adversos
6.
Appl Opt ; 57(24): 6851-6859, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30129569

RESUMEN

CONTEXT: With ISS-SOLAR-SolACES, a new approach in terms of calibrating solar spectral irradiance (SSI) data was validated during the mission period from 2008 to 2017: an ionization chamber (IC) as primary detector standard, operated in space, allowed daily calibration measurements. ISSUE: Though primary photo-ionization efficiencies and higher-order ionization effects from photoelectrons are constant with time, filter transmissions and signal contributions from solar x-rays are to be determined for the SSI data evaluation, requiring a deeper investigation. AIMS AND METHODS: The experiences made with ionization chambers in the laboratory and aboard the ISS-SOLAR-SolACES mission are presented. They include the determination of higher-order ionization effects, the measured transmission of the filters with time, and the treatment of the solar soft x-ray background. Recommended combinations of IC filling gases and filter materials as well as laboratory and in-space measurements will provide correction procedures for different levels of solar activity to achieve further improvement of SSI data accuracy in the spectral range from 1 nm to 133 nm. Results and Perspectives. The usage of the IC technology aims for establishing absolute SolACES-type calibration equipment in space, providing reference SSI data sets in solar and solar-terrestrial science, as well as in related applications such as global navigation satellite system signal evaluation.

7.
BMC Genomics ; 18(1): 565, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28750625

RESUMEN

BACKGROUND: To date, genome-scale analyses in the domestic horse have been limited by suboptimal single nucleotide polymorphism (SNP) density and uneven genomic coverage of the current SNP genotyping arrays. The recent availability of whole genome sequences has created the opportunity to develop a next generation, high-density equine SNP array. RESULTS: Using whole genome sequence from 153 individuals representing 24 distinct breeds collated by the equine genomics community, we cataloged over 23 million de novo discovered genetic variants. Leveraging genotype data from individuals with both whole genome sequence, and genotypes from lower-density, legacy SNP arrays, a subset of ~5 million high-quality, high-density array candidate SNPs were selected based on breed representation and uniform spacing across the genome. Considering probe design recommendations from a commercial vendor (Affymetrix, now Thermo Fisher Scientific) a set of ~2 million SNPs were selected for a next-generation high-density SNP chip (MNEc2M). Genotype data were generated using the MNEc2M array from a cohort of 332 horses from 20 breeds and a lower-density array, consisting of ~670 thousand SNPs (MNEc670k), was designed for genotype imputation. CONCLUSIONS: Here, we document the steps taken to design both the MNEc2M and MNEc670k arrays, report genomic and technical properties of these genotyping platforms, and demonstrate the imputation capabilities of these tools for the domestic horse.


Asunto(s)
Técnicas de Genotipaje/métodos , Caballos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Animales , Frecuencia de los Genes , Técnicas de Genotipaje/normas , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Estándares de Referencia , Secuenciación Completa del Genoma
8.
BMC Genomics ; 17(1): 875, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814670

RESUMEN

BACKGROUND: Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. RESULTS: To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. CONCLUSIONS: Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types, duplication ages and co-expression consequences.


Asunto(s)
Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Zea mays/genética , Perfilación de la Expresión Génica , Genes de Plantas
9.
Nat Comput ; 14(3): 355-374, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300711

RESUMEN

This paper focuses on the application of hp hierarchic genetic strategy (hp-HGS) for solution of a challenging problem, the inversion of 3D direct current (DC) resistivity logging measurements. The problem under consideration has been formulated as the global optimization one, for which the objective function (misfit between computed and reference data) exhibits multiple minima. In this paper, we consider the extension of the hp-HGS strategy, namely we couple the hp-HGS algorithm with a gradient based optimization method for a local search. Forward simulations are performed with a self-adaptive hp finite element method, hp-FEM. The computational cost of misfit evaluation by hp-FEM depends strongly on the assumed accuracy. This accuracy is adapted to the tree of populations generated by the hp-HGS algorithm, which makes the global phase significantly cheaper. Moreover, tree structure of demes as well as branch reduction and conditional sprouting mechanism reduces the number of expensive local searches up to the number of minima to be recognized. The common (direct and inverse) accuracy control, crucial for the hp-HGS efficiency, has been motivated by precise mathematical considerations. Numerical results demonstrate the suitability of the proposed method for the inversion of 3D DC resistivity logging measurements.

10.
Proc Natl Acad Sci U S A ; 109(29): 11878-83, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753482

RESUMEN

Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses.


Asunto(s)
Productos Agrícolas/genética , Evolución Molecular , Redes Reguladoras de Genes/genética , Selección Genética/genética , Transcriptoma/genética , Zea mays/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Genética de Población , Genotipo , Análisis por Micromatrices , Anotación de Secuencia Molecular
11.
PLoS Genet ; 8(12): e1003139, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284302

RESUMEN

Impaired acrosomal reaction (IAR) of sperm causes male subfertility in humans and animals. Despite compelling evidence about the genetic control over acrosome biogenesis and function, the genomics of IAR is as yet poorly understood, providing no molecular tools for diagnostics. Here we conducted Equine SNP50 Beadchip genotyping and GWAS using 7 IAR-affected and 37 control Thoroughbred stallions. A significant (P<6.75E-08) genotype-phenotype association was found in horse chromosome 13 in FK506 binding protein 6 (FKBP6). The gene belongs to the immunophilins FKBP family known to be involved in meiosis, calcium homeostasis, clathrin-coated vesicles, and membrane fusions. Direct sequencing of FKBP6 exons in cases and controls identified SNPs g.11040315G>A and g.11040379C>A (p.166H>N) in exon 4 that were significantly associated with the IAR phenotype both in the GWAS cohort (n = 44) and in a large multi-breed cohort of 265 horses. All IAR stallions were homozygous for the A-alleles, while this genotype was found only in 2% of controls. The equine FKBP6 was exclusively expressed in testis and sperm and had 5 different transcripts, of which 4 were novel. The expression of this gene in AC/AG heterozygous controls was monoallelic, and we observed a tendency for FKBP6 up-regulation in IAR stallions compared to controls. Because exon 4 SNPs had no effect on the protein structure, it is likely that FKBP6 relates to the IAR phenotype via regulatory or modifying functions. In conclusion, FKBP6 was considered a susceptibility gene of incomplete penetrance for IAR in stallions and a candidate gene for male subfertility in mammals. FKBP6 genotyping is recommended for the detection of IAR-susceptible individuals among potential breeding stallions. Successful use of sperm as a source of DNA and RNA propagates non-invasive sample procurement for fertility genomics in animals and humans.


Asunto(s)
Reacción Acrosómica/genética , Estudio de Asociación del Genoma Completo , Enfermedades de los Caballos/genética , Caballos/genética , Infertilidad Masculina/veterinaria , Proteínas de Unión a Tacrolimus , Alelos , Animales , Predisposición Genética a la Enfermedad , Homocigoto , Enfermedades de los Caballos/fisiopatología , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Masculino , Meiosis , Polimorfismo de Nucleótido Simple , Espermatozoides/metabolismo , Espermatozoides/patología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Testículo/metabolismo , Testículo/patología
12.
J Hered ; 105(2): 163-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24215078

RESUMEN

A dominantly inherited gain-of-function mutation in the glycogen synthase (GYS1) gene, resulting in excess skeletal muscle glycogen, has been identified in more than 30 horse breeds. This mutation is associated with the disease Equine Polysaccharide Storage Myopathy Type 1, yet persists at high frequency in some breeds. Under historical conditions of daily work and limited feed, excess muscle glycogen may have been advantageous, driving the increase in frequency of this allele. Fine-scale DNA sequencing in 80 horses and genotype assays in 279 horses revealed a paucity of haplotypes carrying the mutant allele when compared with the wild-type allele. Additionally, we found increased linkage disequilibrium, measured by relative extended haplotype homozygosity, in haplotypes carrying the mutation compared with haplotypes carrying the wild-type allele. Coalescent simulations of Belgian horse populations demonstrated that the high frequency and extended haplotype associated with the GYS1 mutation were unlikely to have arisen under neutrality or due to population demography. In contrast, in Quarter Horses, elevated relative extended haplotype homozygosity was associated with multiple haplotypes and may be the result of recent population expansion or a popular sire effect. These data suggest that the GYS1 mutation underwent historical selection in the Belgian, but not in the Quarter Horse.


Asunto(s)
Glucógeno Sintasa/genética , Caballos/genética , Selección Genética , Alelos , Animales , Cruzamiento , Predisposición Genética a la Enfermedad , Glucógeno/química , Enfermedad del Almacenamiento de Glucógeno/genética , Haplotipos , Homocigoto , Enfermedades de los Caballos/genética , Músculo Esquelético/química , Mutación , Análisis de Secuencia de ADN
14.
J CME ; 13(1): 2370746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952925

RESUMEN

The COVID-19 pandemic has had disruptive effects on all parts of the health-care system, including the continuing education (CE) landscape. This report documents, what has happened in six different CE accreditation systems to CE activities as well as learners. Complete lockdown periods in the first part of the COVID-19 pandemic have inevitably led to reductions in numbers of the then predominant format of education, i.e. onsite in-person meetings. However, with impressive speed CE providers have switched to online educational formats. With regard to learner interactions this has compensated, and in some systems even overcompensated, the loss of in-person educational opportunities. Thus, our data convincingly demonstrate the resilience of CPD in times of a global health crisis and offer important insights in how CPD might become more effective in the future.

15.
Biol Psychiatry ; 93(6): 512-523, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36494220

RESUMEN

BACKGROUND: Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS: Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS: We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS: These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.


Asunto(s)
Motivación , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Ratones Obesos , Neuronas/fisiología , Obesidad , Receptores de Dopamina D1/metabolismo , Ratones Endogámicos C57BL
16.
J Geophys Res Space Phys ; 127(5): e2021JA030121, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35865128

RESUMEN

We investigate the impact of conjugate photoelectrons (CPEs) on the topside (∼600 km altitude) ionosphere at low and midlatitudes using measurements of the ion temperature, density, and composition from the first Republic of China satellite during a period of the high to moderate solar activity (March 1999 to June 2004). Elevated ion temperatures and densities are observed in the dark Northern American-Atlantic sector during the December solstice and in the Australian sector during the June solstice. The oxygen ion fraction and density are also elevated at these locations. These observations indicate that photoelectrons from the conjugate hemisphere heat the local ionospheric plasma. The morphology of the ion temperature in the winter hemisphere is well represented by the solar zenith angle in the sunlit conjugate hemisphere. The CPE hypothesis for the observed ionospheric heating is confirmed by coincident nighttime enhancements of the far ultraviolet airglow measured by the Global Ultraviolet Imager onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite.

17.
Front Syst Neurosci ; 16: 1044686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591324

RESUMEN

Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.

18.
Integr Comp Biol ; 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32970803

RESUMEN

A gene's response to an environment is tightly bound to the underlying genetic variation present in an individual's genome and varies greatly depending on the tissue it is being expressed in. Gene co-expression networks provide a mechanism to understand and interpret the collective transcriptional responses of genes. Here, we use the Camoco co-expression network framework to characterize the transcriptional landscape of adipose and gluteal muscle tissue in 83 domestic horses (Equus caballus) representing 5 different breeds. In each tissue, gene expression profiles, capturing transcriptional response due to variation across individuals, were used to build two separate, tissue-focused, genotypically-diverse gene co-expression networks. The aim of our study was to identify significantly co-expressed clusters of genes in each tissue, then compare the clusters across networks to quantify the extent that clusters were found in both networks as well as to identify clusters found in a single network. The known and unknown functions for each network were quantified using complementary, supervised and unsupervised approaches. First, supervised ontological enrichment was utilized to quantify biological functions represented by each network. Curated ontologies (GO and KEGG) were used to measure the known biological functions present in each tissue. Overall, a large percentage of terms (40.3% of GO and 41% of KEGG) were co-expressed in at least one tissue. Many terms were co-expressed in both tissues, however a small proportion of terms exhibited single tissue co-expression suggesting functional differentiation based on curated, functional annotation. To complement this, an unsupervised approach not relying on ontologies was employed. Strongly co-expressed sets of genes defined by Markov clustering identified sets of unannotated genes showing similar patterns of co-expression within a tissue. We compared gene sets across tissues and identified clusters of genes the either segregate in co-expression by tissue or exhibit high levels of co-expression in both tissues. Clusters were also integrated with GO and KEGG ontologies to identify gene sets containing previously curated annotations versus unannotated gene sets indicating potentially novel biological function. Coupling together these transcriptional datasets, we mapped the transcriptional landscape of muscle and adipose setting up a generalizable framework for interpreting gene function for additional tissues in the horse and other species.

19.
Mol Ecol ; 18(9): 1848-62, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19302356

RESUMEN

Landscape genetics is an emerging discipline that utilizes environmental and historical data to understand geographic patterns of genetic diversity. Niche modelling has added a new dimension to such efforts by allowing species-environmental associations to be projected into the past so that hypotheses about historical vicariance can be generated and tested independently with genetic data. However, previous approaches have primarily utilized DNA sequence data to test inferences about historical isolation and may have missed very recent episodes of environmentally mediated divergence. We type 15 microsatellite loci in California mule deer and identify five genetic groupings through a Structure analysis that are also well predicted by environmental data. We project the niches of these five deer ecotypes to the last glacial maximum (LGM) and show they overlap to a much greater extent than today, suggesting that vicariance associated with the LGM cannot explain the present-day genetic patterns. Further, we analyse mitochondrial DNA (mtDNA) sequence trees to search for evidence of historical vicariance and find only two well-supported clades. A coalescence-based analysis of mtDNA data shows that the genetic divergence of the mule deer genetic clusters in California is recent and appears to be mediated by ecological factors. The importance of environmental factors in explaining the genetic diversity of California mule deer is unexpected given that they are highly mobile species and have a broad habitat distribution. Geographic differences in the timing of reproduction and peak vegetation as well as habitat choice reflecting natal origin may explain the persistence of genetic subdivision.


Asunto(s)
Ciervos/genética , Variación Genética , Genética de Población , Animales , California , Análisis por Conglomerados , ADN Mitocondrial/genética , Ecosistema , Ambiente , Evolución Molecular , Femenino , Geografía , Haplotipos , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Dinámica Poblacional , Alineación de Secuencia , Análisis de Secuencia de ADN
20.
J Agric Food Chem ; 67(43): 12026-12036, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31589432

RESUMEN

Peanut is an important legume providing products with nutrient dense including mineral nutrition. However, the genetic basis underlying the variations in the mineral composition in peanut is still unknown. Genome-wide association studies (GWAS) of the concentrations of 13 mineral elements combined with coexpression network were performed using a diverse panel of 120 genotypes mainly selected from the U.S. peanut mini core collection. A total of 36 significant quantitative trait loci (QTLs) associated with five elemental concentrations were identified with phenotypic variation explained (PVE) from 18.35% to 27.56%, in which 24 QTLs were for boron (B), 2 QTLs for copper (Cu), 6 QTLs for sodium (Na), 3 QTLs for sulfur (S), and 1 QTL for zinc (Zn). A total of 110 nonredundant candidate causal genes identified were significantly associated with elemental accumulation, which included one high-priority overlap (HPO) candidate gene arahy.KQD4NT, an important elemental/metal transporter gene located on LGB04 with position 5,413,913-5,417,353.


Asunto(s)
Arachis/genética , Boro/metabolismo , Cobre/metabolismo , Proteínas de Plantas/genética , Sodio/metabolismo , Azufre/metabolismo , Zinc/metabolismo , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA