RESUMEN
Laminar functional magnetic resonance imaging (fMRI) holds the potential to study connectivity at the laminar level in humans. Here we analyze simultaneously recorded electroencephalography (EEG) and high-resolution fMRI data to investigate how EEG power modulations, induced by a task with an attentional component, relate to changes in fMRI laminar connectivity between and within brain regions in visual cortex. Our results indicate that our task-induced decrease in beta power relates to an increase in deep-to-deep layer coupling between regions and to an increase in deep/middle-to-superficial layer connectivity within brain regions. The attention-related alpha power decrease predominantly relates to reduced connectivity between deep and superficial layers within brain regions, since, unlike beta power, alpha power was found to be positively correlated to connectivity. We observed no strong relation between laminar connectivity and gamma band oscillations. These results indicate that especially beta band, and to a lesser extent, alpha band oscillations relate to laminar-specific fMRI connectivity. The differential effects for alpha and beta bands indicate that they relate to different feedback-related neural processes that are differentially expressed in intra-region laminar fMRI-based connectivity.
Asunto(s)
Imagen por Resonancia Magnética , Corteza Visual , Humanos , Imagen por Resonancia Magnética/métodos , Electroencefalografía/métodos , Encéfalo , Atención , Mapeo Encefálico/métodosRESUMEN
Action selection is biased by the valence of anticipated outcomes. To assess mechanisms by which these motivational biases are expressed and controlled, we measured simultaneous EEG-fMRI during a motivational Go/NoGo learning task (N = 36), leveraging the temporal resolution of EEG and subcortical access of fMRI. VmPFC BOLD encoded cue valence, importantly predicting trial-by-trial valence-driven response speed differences and EEG theta power around cue onset. In contrast, striatal BOLD encoded selection of active Go responses and correlated with theta power around response time. Within trials, theta power ramped in the fashion of an evidence accumulation signal for the value of making a "Go" response, capturing the faster responding to reward cues. Our findings reveal a dual nature of midfrontal theta power, with early components reflecting the vmPFC contribution to motivational biases, and late components reflecting their striatal translation into behavior, in line with influential recent "value of work" theories of striatal processing.
Asunto(s)
Motivación , Ritmo Teta , Electroencefalografía , Imagen por Resonancia Magnética , Recompensa , Ritmo Teta/fisiologíaRESUMEN
This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage.
Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Sincronización Cortical/fisiología , Imagen por Resonancia Magnética/métodos , Animales , Humanos , Neuroimagen/métodosRESUMEN
Electrophysiological recordings in animals have indicated that visual cortex γ-band oscillatory activity is predominantly observed in superficial cortical layers, whereas α- and ß-band activity is stronger in deep layers. These rhythms, as well as the different cortical layers, have also been closely related to feedforward and feedback streams of information. Recently, it has become possible to measure laminar activity in humans with high-resolution functional MRI (fMRI). In this study, we investigated whether these different frequency bands show a differential relation with the laminar-resolved blood-oxygen level-dependent (BOLD) signal by combining data from simultaneously recorded EEG and fMRI from the early visual cortex. Our visual attention paradigm allowed us to investigate how variations in strength over trials and variations in the attention effect over subjects relate to each other in both modalities. We demonstrate that γ-band EEG power correlates positively with the superficial layers' BOLD signal and that ß-power is negatively correlated to deep layer BOLD and α-power to both deep and superficial layer BOLD. These results provide a neurophysiological basis for human laminar fMRI and link human EEG and high-resolution fMRI to systems-level neuroscience in animals.
Asunto(s)
Ritmo alfa/fisiología , Ritmo beta/fisiología , Ritmo Gamma/fisiología , Imagen por Resonancia Magnética , Oxígeno/metabolismo , Corteza Visual , Adolescente , Adulto , Femenino , Humanos , Masculino , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiologíaRESUMEN
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8-13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.
Asunto(s)
Atención/fisiología , Filtrado Sensorial , Corteza Visual/fisiología , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Percepción Espacial , Adulto JovenRESUMEN
Actions are biased by the outcomes they can produce: Humans are more likely to show action under reward prospect, but hold back under punishment prospect. Such motivational biases derive not only from biased response selection, but also from biased learning: humans tend to attribute rewards to their own actions, but are reluctant to attribute punishments to having held back. The neural origin of these biases is unclear. Specifically, it remains open whether motivational biases arise primarily from the architecture of subcortical regions or also reflect cortical influences, the latter being typically associated with increased behavioral flexibility and control beyond stereotyped behaviors. Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased prediction errors occurred in cortical regions (dorsal anterior and posterior cingulate cortices) before subcortical regions (striatum). These results highlight that biased learning is not a mere feature of the basal ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated mechanism.
Asunto(s)
Cuerpo Estriado , Aprendizaje , Humanos , Aprendizaje/fisiología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiología , Neostriado , Recompensa , Imagen por Resonancia Magnética , Toma de Decisiones/fisiología , SesgoRESUMEN
Neural oscillations in the alpha band (8-12 Hz) are increasingly viewed as an active inhibitory mechanism that gates and controls sensory information processing as a function of cognitive relevance. Extending this view, phase synchronization of alpha oscillations across distant cortical regions could regulate integration of information. Here, we investigated whether such long-range cross-region coupling in the alpha band is intrinsically and selectively linked to activity in a distinct functionally specialized brain network. If so, this would provide new insight into the functional role of alpha band phase synchrony. We adapted the phase-locking value to assess fluctuations in synchrony that occur over time in ongoing activity. Concurrent EEG and functional magnetic resonance imaging (fMRI) were recorded during resting wakefulness in 26 human subjects. Fluctuations in global synchrony in the upper alpha band correlated positively with activity in several prefrontal and parietal regions (as measured by fMRI). fMRI intrinsic connectivity analysis confirmed that these regions correspond to the well known fronto-parietal (FP) network. Spectral correlations with this network's activity confirmed that no other frequency band showed equivalent results. This selective association supports an intrinsic relation between large-scale alpha phase synchrony and cognitive functions associated with the FP network. This network has been suggested to implement phasic aspects of top-down modulation such as initiation and change in moment-to-moment control. Mechanistically, long-range upper alpha band synchrony is well suited to support these functions. Complementing our previous findings that related alpha oscillation power to neural structures serving tonic control, the current findings link alpha phase synchrony to neural structures underpinning phasic control of alertness and task requirements.
Asunto(s)
Adaptación Fisiológica/fisiología , Ritmo alfa/fisiología , Lóbulo Frontal/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.
Asunto(s)
Ritmo alfa/fisiología , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Potenciales Evocados Visuales/fisiología , Adolescente , Adulto , Anciano , Análisis de Varianza , Electroencefalografía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Tiempo de Reacción/fisiologíaRESUMEN
Trial-by-trial variability in perceptual performance on identical stimuli has been related to spontaneous fluctuations in ongoing activity of intrinsic functional connectivity networks (ICNs). In a paradigm requiring sustained vigilance for instance, we previously observed that higher prestimulus activity in a cingulo-insular-thalamic network facilitated subsequent perception. Here, we test our proposed interpretation that this network underpins maintenance of tonic alertness. We used simultaneous acquisition of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) in the absence of any paradigm to test an ensuing hypothesis, namely that spontaneous fluctuations in this ICN's activity (as measured by fMRI) should show a positive correlation with the electrical signatures of tonic alertness (as recorded by concurrent EEG). We found in human subjects (19 male, 7 female) that activity in a network comprising dorsal anterior cingulate cortex, anterior insula, anterior prefrontal cortex and thalamus is positively correlated with global field power (GFP) of upper alpha band (10-12 Hz) oscillations, the most consistent electrical index of tonic alertness. Conversely, and in line with earlier findings, alpha band power was negatively correlated with activity in another ICN, the so-called dorsal attention network which is most prominently involved in selective spatial attention. We propose that the cingulo-insular-thalamic network serves maintaining tonic alertness through generalized expression of cortical alpha oscillations. Attention is mediated by activity in other systems, e.g., the dorsal attention network for space, selectively disrupts alertness-related suppression and hence manifests as local attenuation of alpha activity.
Asunto(s)
Ritmo alfa , Atención/fisiología , Mapeo Encefálico , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Oxígeno/sangre , Análisis de Regresión , Análisis Espectral , Factores de Tiempo , Adulto JovenRESUMEN
Parkinson's disease (PD) is characterized by striatal dopamine depletion, especially in the posterior putamen. The dense connectivity profile of the striatum suggests that these local impairments may propagate throughout the whole cortico-striatal network. Here we test the effect of striatal dopamine depletion on cortico-striatal network properties by comparing the functional connectivity profile of the posterior putamen, the anterior putamen, and the caudate nucleus between 41 PD patients and 36 matched controls. We used multiple regression analyses of resting-state functional magnetic resonance imaging data to quantify functional connectivity across different networks. Each region had a distinct connectivity profile that was similarly expressed in patients and controls: the posterior putamen was uniquely coupled to cortical motor areas, the anterior putamen to the pre-supplementary motor area and anterior cingulate cortex, and the caudate nucleus to the dorsal prefrontal cortex. Differences between groups were specific to the putamen: although PD patients showed decreased coupling between the posterior putamen and the inferior parietal cortex, this region showed increased functional connectivity with the anterior putamen. We conclude that dopamine depletion in PD leads to a remapping of cerebral connectivity that reduces the spatial segregation between different cortico-striatal loops. These alterations of network properties may underlie abnormal sensorimotor integration in PD.
Asunto(s)
Mapeo Encefálico , Corteza Cerebral/patología , Cuerpo Estriado/patología , Enfermedad de Parkinson/patología , Análisis de Varianza , Corteza Cerebral/irrigación sanguínea , Cuerpo Estriado/irrigación sanguínea , Electromiografía/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/patología , Oxígeno/sangre , Enfermedad de Parkinson/complicaciones , Análisis de RegresiónRESUMEN
BACKGROUND: The combination of EEG and ultra-high-field (7â¯T and above) fMRI holds the promise to relate electrophysiology and hemodynamics with greater signal to noise level and at higher spatial resolutions than conventional field strengths. Technical and safety restrictions have so far resulted in compromises in terms of MRI coil selection, resulting in reduced, signal quality, spatial coverage and resolution in EEG-fMRI studies at 7â¯T. NEW METHOD: We adapted a 64-channel MRI-compatible EEG cap so that it could be used with a closed 32-channel MRI head coil thus avoiding several of these compromises. We compare functional and anatomical as well as the EEG quality recorded with this adapted setup with those recorded with a setup that uses an open-ended 8-channel head-coil. RESULTS: Our set-up with the adapted EEG cap inside the closed 32 channel coil resulted in the recording of good quality EEG and (f)MRI data. Both functional and anatomical MRI images show no major effects of the adapted EEG cap on MR signal quality. We demonstrate the ability to compute ERPs and changes in alpha and gamma oscillations from the recorded EEG data. COMPARISON WITH EXISTING METHODS: Compared to MRI recordings with an 8-channel open-ended head-coil, the loss in signal quality of the MRI images related to the adapted EEG cap is considerably reduced. CONCLUSIONS: The adaptation of the EEG cap permits the simultaneous recording of good quality whole brain (f)MRI data using a 32 channel receiver coil, while maintaining the quality of the EEG data.
Asunto(s)
Electroencefalografía , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Potenciales EvocadosRESUMEN
In this work we introduce a new algorithm to correct the imaging artefacts in the EEG signal measured during fMRI acquisition. The correction techniques proposed so far cannot optimally represent transitions, i.e. when abrupt changes of the artefact properties due to head movements occur. The algorithm developed here takes the head movement parameters from the fMRI signal into account to calculate adequate EEG artefact templates and subsequently correct the distorted EEG data. The data reported in this work demonstrate that the realignment parameter-informed algorithm outperforms the commonly used moving average algorithm if head movements occur. The superiority is reflected by comparing the residual variance after artefact correction with either method. The residual variance is lower around head-movements that exceed head deflections of about 1 mm when applying the realignment parameter-informed algorithm. Additionally, the signal to noise ratio of a surrogate event-related potential (ERP) increased by 10-40% for head displacements larger than 1 mm. The algorithm developed here is particularly suited for studies where head movements of the subject cannot be prevented as in studies with patients, children, or during sleep. Furthermore, the enhanced signal to noise ratio of a single trial ERP indicates the power of the presented algorithm for single trial ERP-fMRI studies in which EEG signal quality is a critical factor.
Asunto(s)
Algoritmos , Artefactos , Electroencefalografía/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Técnica de Sustracción , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG-fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo/fisiología , Recuerdo Mental/fisiología , Red Nerviosa/fisiología , Retención en Psicología/fisiología , Adolescente , Femenino , Humanos , MasculinoRESUMEN
We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2-9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity.
Asunto(s)
Nivel de Alerta/fisiología , Mapeo Encefálico/métodos , Lóbulo Frontal/fisiología , Descanso/fisiología , Ritmo Teta , Adolescente , Adulto , Atención/fisiología , Circulación Cerebrovascular , Electroencefalografía , Femenino , Lóbulo Frontal/irrigación sanguínea , Lóbulo Frontal/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Análisis de Componente Principal , Procesamiento de Señales Asistido por ComputadorRESUMEN
Changes in coherence with aging during cognitive tasks have, until now, not been investigated. However, several fMRI and positron emission tomography studies of cognitive tasks have found increased bilateral activity in elderly subjects. Changes in coherence with aging during a cognitive task were investigated to see if EEG coherence was present in older adults. An auditory oddball task, which is a widely used test for cognitive function, was used. Eleven young adults (27.8 +/- 4.8 years, six females) and 10 older adults (61.3 +/- 4.6 years, six females) were studied, and both interhemispheric and long- and short-range intrahemispheric coherence were considered. Higher interhemispheric coherence was found in the older subjects in the delta band. Short intrahemispheric coherence was also increased in the theta, delta, and alpha bands. Higher coherence, although not significantly different, was also found for all other coherence types and bands, except for long intrahemispheric coherence in the low gamma band. The results presented here provide the first evidence that aging is associated with increased EEG coherence during a relatively easy cognitive task.
Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Adulto , Anciano , Análisis de Varianza , Mapeo Encefálico , Dominancia Cerebral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Procesamiento de Señales Asistido por ComputadorRESUMEN
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral-medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
Asunto(s)
Ritmo alfa/fisiología , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Descanso/fisiología , Adolescente , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto JovenRESUMEN
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD fluctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60-80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.
Asunto(s)
Ondas Encefálicas/fisiología , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Adulto JovenRESUMEN
Both local discourse and world knowledge are known to influence sentence processing. We investigated how these two sources of information conspire in language comprehension. Two types of critical sentences, correct and world knowledge anomalies, were preceded by either a neutral or a local context. The latter made the world knowledge anomalies more acceptable or plausible. We predicted that the effect of world knowledge anomalies would be weaker for the local context. World knowledge effects have previously been observed in the left inferior frontal region (Brodmann's area 45/47). In the current study, an effect of world knowledge was present in this region in the neutral context. We also observed an effect in the right inferior frontal gyrus, which was more sensitive to the discourse manipulation than the left inferior frontal gyrus. In addition, the left angular gyrus reacted strongly to the degree of discourse coherence between the context and critical sentence. Overall, both world knowledge and the discourse context affect the process of meaning unification, but do so by recruiting partly different sets of brain areas.
Asunto(s)
Mapeo Encefálico , Comprensión/fisiología , Lóbulo Frontal/fisiología , Lateralidad Funcional/fisiología , Conocimiento , Lenguaje , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Psicolingüística , Adulto JovenRESUMEN
Neuronal gamma-band synchronization is central for cognition. Respective studies in human subjects focused on a visually induced transient enhancement of broadband EEG power. In this issue of Neuron, Yuval-Greenberg et al. demonstrate that this EEG response is an artifact of microsaccades, raising the question of whether gamma-band synchronization can be assessed with EEG.