Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 139(6): 1143-56, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005807

RESUMEN

Platelets play a central role in thrombosis, hemostasis, and inflammation. We show that activated platelets release inorganic polyphosphate (polyP), a polymer of 60-100 phosphate residues that directly bound to and activated the plasma protease factor XII. PolyP-driven factor XII activation triggered release of the inflammatory mediator bradykinin by plasma kallikrein-mediated kininogen processing. PolyP increased vascular permeability and induced fluid extravasation in skin microvessels of mice. Mice deficient in factor XII or bradykinin receptors were resistant to polyP-induced leakage. PolyP initiated clotting of plasma via the contact pathway. Ablation of intrinsic coagulation pathway proteases factor XII and factor XI protected mice from polyP-triggered lethal pulmonary embolism. Targeting polyP with phosphatases interfered with procoagulant activity of activated platelets and blocked platelet-induced thrombosis in mice. Addition of polyP restored defective plasma clotting of Hermansky-Pudlak Syndrome patients, who lack platelet polyP. The data identify polyP as a new class of mediator having fundamental roles in platelet-driven proinflammatory and procoagulant disorders.


Asunto(s)
Plaquetas/metabolismo , Mediadores de Inflamación/metabolismo , Polifosfatos/metabolismo , Animales , Bradiquinina/metabolismo , Factor XII/genética , Factor XII/metabolismo , Fibrina/metabolismo , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Plasma , Receptores de Bradiquinina/metabolismo , Trombosis/metabolismo
2.
Magn Reson Med ; 64(6): 1607-15, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20665826

RESUMEN

This study reports the T(1) and T(2) relaxation rates of rhodamine-labeled anionic magnetic nanoparticles determined at 7, 11.7, and 17.6 T both in solution and after cellular internalization. Therefore cells were incubated with rhodamine-labeled anionic magnetic nanoparticles and were prepared at decreasing concentrations. Additionally, rhodamine-labeled anionic magnetic nanoparticles in solution were used for extracellular measurements. T(1) and T(2) were determined at 7, 11.7, and 17.6 T. T(1) times were determined with an inversion-recovery snapshot-flash sequence. T(2) times were obtained from a multispin-echo sequence. Inductively coupled plasma-mass spectrometry was used to determine the iron content in all samples, and r(1) and r(2) were subsequently calculated. The results were then compared with cells labeled with AMI-25 and VSOP C-200. In solution, the r(1) and r(2) of rhodamine-labeled anionic magnetic nanoparticles were 4.78/379 (7 T), 3.28/389 (11.7 T), and 2.00/354 (17.6 T). In cells, the r(1) and r(2) were 0.21/56 (7 T), 0.19/37 (11.7 T), and 0.1/23 (17.6 T). This corresponded to an 11- to 23-fold decrease in r(1) and an 8- to 15-fold decrease in r(2) . A decrease in r(1) was observed for AMI-25 and VSOP C-200. AMI-25 and VSOP exhibited a 2- to 8-fold decrease in r(2) . In conclusion, cellular internalization of iron oxide nanoparticles strongly decreased their T(1) and T(2) potency.


Asunto(s)
Medios de Contraste/farmacocinética , Dextranos/farmacocinética , Macrófagos/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Animales , Medios de Contraste/química , Dextranos/química , Nanopartículas de Magnetita/química , Ratones , Microscopía Electrónica de Transmisión de Rastreo , Rodaminas/farmacocinética , Espectrofotometría Atómica , Succímero/farmacocinética
3.
Inorg Chem ; 36(11): 2372-2378, 1997 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-11669873

RESUMEN

Ionic ruthenium thioether complexes [Cp(LL')Ru(SRR')]PF(6) (LL' = Ph(2)PCH(2)PPh(2) (1), Ph(2)PC(2)H(4)PPh(2) (2), (Ph(3)P, CO) (3), Me(2)PC(2)H(4)PPh(2) (4), (S,S)-Ph(2)PCHMeCHMePPh(2) (5), SRR' = MeSPh (a), MeS-i-Pr (b), MeSBz (c), i-PrSBz (d), EtSBz (e), MeSCy (f), SC(4)H(8) (g)) were synthesized from the corresponding chloro complexes [Cp(LL')RuCl] and thioethers. 5a crystallized in the orthorhombic system, space group P2(1)2(1)2(1) (No. 19), with a = 11.269(3) Å, b = 15.104(2) Å, c = 23.177(4) Å, and Z = 4. 5b crystallized in the monoclinic system, space group P2(1) (No. 4), with a = 10.539(5) Å, b = 16.216(9) Å, c = 11.011(8) Å, beta = 106.04(2) degrees, and Z = 2. A similar ligand exchange reaction yielded the analogous sulfoxide complexes [Cp(LL')Ru(S(O)RR')]PF(6) (6-10). 10a crystallized in the orthorhombic system, space group P2(1)2(1)2(1) (No. 19), with a = 14.1664(13) Å, b = 15.792(2) Å, c = 17.641(2) Å, and Z = 4. 10b.0.93CH(2)Cl(2) crystallized in the orthorhombic system, space group P2(1)2(1)2(1) (No. 19), with a = 12.069(2) Å, b = 17.379(2) Å, c = 19.760(5) Å, and Z = 4. The thioether complexes can also be directly converted to sulfoxide complexes with the strong oxygen transfer reagent dimethyldioxirane (DMD). No crossover products are formed when mixtures of two thioether complexes (e.g., 1a/2c or 1c/2a) are treated with DMD, demonstrating that no Ru-S bond cleavage is involved. Moderate diastereoselectivities are observed for the oxygen transfer to chiral, racemic thioether complexes 3 (8-28%) and 4 (34-60%). Oxidation of the (S,S)-CHIRAPHOS complexes 5, however, is highly stereoselective (de = 46-98%). Treatment of the sulfoxide complexes 10 with sodium iodide removes the chiral, nonracemic sulfoxides from the metal with retention of the configuration at sulfur.

4.
Dalton Trans ; 40(6): 1209-19, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21088787

RESUMEN

The sulfur oxides SO, SO2 and SO3, and thioformaldehyde H2C=S and its oxides H2C=SO and H2C=SO2 form stable coordination compounds with a range of transition metals. The complexes have a rich chemistry which differs markedly from that of the free ligands. Typical reactions involve electrophilic additions, nucleophilic additions and cycloadditions. The complexes can be used as synthons to incorporate these small molecules as building blocks into larger structures.

5.
J Am Chem Soc ; 128(1): 68-9, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16390125

RESUMEN

The diastereomeric methyl rhenium complex [CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)] was prepared in two steps from chiral racemic [CpRe(NO)(CO)(NCMe)]BF4 and the chiral racemic phosphine P(Me)(Ph)(2-C6H4NMe2). The unlike diastereomer reacts preferentially with MeSO3H to give the ring-closed ionic complex unlike-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 along with unreacted like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)], which is easily separated and converted to like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3. Starting from (R)-P(Me)(Ph)(2-C6H4NMe2), the diastereomerically and enantiomerically pure complexes (RRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 and (SRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 were obtained. Thus, this reaction sequence demonstrates a highly diastereoselective proton transfer from a functionalized chiral phosphine to a transition metal. Furthermore, it provides efficient access to enantiomerically pure half-sandwich rhenium complexes.

6.
Chemistry ; 12(18): 4821-34, 2006 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-16642522

RESUMEN

Ruthenium hydrogensulfido complexes [CpRu(P-P)(SH)] ((P-P)=Ph(2)PCH(2)PPh(2) (dppm), Ph(2)PC(2)H(4)PPh(2) (dppe)) were obtained from the corresponding chloro complexes by Cl/SH exchange. Condensation with a range of cinnamaldehydes gave thiocinnamaldehyde complexes [CpRu(P-P)(S=CH-CR(2)=CHR(1))]PF(6) (R(1)=C(6)H(4)X, R(2)=H, Me, X=H, OMe, NMe(2), Cl, NO(2)) as highly-colored crystalline compounds. The thiocinnamaldehyde complexes undergo [4+2]-cycloaddition reactions with vinyl ethers CH(2)=CHOR(3) (R(3)=Et, Bu) and styrenes H(2)C=CHC(6)H(4)Y (Y=H, Me, OMe, Cl, Br, NO(2)) to give complexes of 2,4,5-trisubstituted 3,4-dihydro-2H-thiopyrans as mixtures of two diastereoisomers. The rate of addition of para-substituted styrenes H(2)C=CHC(6)H(4)Y to [CpRu(dppm)(S=CH-CH=CHPh)]PF(6) increases in the series Y=NO(2), Br, Cl, H, Me, OMe, indicating that the cycloaddition is dominated by the HOMO(dienophile)-LUMO(diene) interaction. The strained dienophiles norbornadiene and norbornene also add, giving ruthenium complexes of 3-thia-tricyclo[6.2.1.0(2,7)]undeca-4,9-dienes and 3-thia-tricyclo[6.2.1.0(2,7)]undec-4-enes, respectively. Addition reactions with acrolein, methacrolein, methyl vinyl ketone, acrylic ester, or ethyl propiolate finally yielded ruthenium complexes of 3,4-disubstituted 3,4-dihydro-2H-thiopyrans and 4H-thiopyrans, respectively.

7.
J Am Chem Soc ; 125(13): 3871-6, 2003 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-12656621

RESUMEN

The molybdenum oxo complexes 1a and 1b catalyze efficiently the sulfur transfer to a series of alkenes 4 and allenes 6, for which elemental sulfur, phenylthiirane, or methylthiirane have been employed as sulfur sources to afford the corresponding episulfides 5 and 7. The most effective catalytic episulfidation system to date is the combination of the dithiophosphate-ligated oxo complex 1b and phenylthiirane (Ibeta). This metathesis process is efficient enough to convert usually reluctant alkenes (cyclopentene, cycloheptene, Z-cyclooctene, Z-cyclononene, E-cyclodecene, norbornene, and even bicyclopropylidene) to their episulfides in good yields under mild conditions. The direct catalytic sulfuration of allenes (cyclonona-1,2-diene, cyclonona-1,2,5-triene, cyclodeca-1,2-diene, and 2,4-dimethylpenta-2,3-diene) to their labile methylenethiiranes is unprecedented.

8.
J Org Chem ; 67(20): 7037-41, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12353997

RESUMEN

The direct molybdenum-catalyzed sulfuration of a variety of isonitriles with elemental sulfur or propene sulfide as sulfur donors affords the corresponding isothiocyanates in good yields and under mild reaction conditions. A catalytic cycle is suggested, in which the molybdenum oxo disulfur complex operates as the active sulfur-transferring species. A novel adduct between the isonitrile and the molybdenum complex has been characterized by X-ray analysis and its association constant determined by UV-vis spectroscopy, but this adduct appears not to be involved in the sulfur-transfer process.

9.
Inorg Chem ; 41(5): 1079-85, 2002 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-11874341

RESUMEN

Propionitrile complexes fac-[M(CO)(3)(P-P)(NCEt)] (M = Mo (3), W (4); P-P = Ph(2)PCH(2)PPh(2) (a), Ph(2)PC(2)H(4)PPh(2) (b), Ph(2)PC(3)H(6)PPh(2) (c), (S,S)-Ph(2)PCHMeCHMePPh(2) (d), Fe(C(5)H(4)PPh(2))(2) (e)) were synthesized from [M(CO)(3)(NCEt)(3)] and the corresponding diphosphine. Reactions of 3 and 4 with sulfur dioxide initially gave complexes fac-[M(CO)(3)(P-P)(eta(2)-SO(2))] (M = Mo (5), W (6)), which slowly isomerized to mer-[M(CO)(3)(P-P)(eta(1)-SO(2))] (M = Mo (7), W (8)). The structures of 7b and 8b were determined by X-ray crystallography. Both compounds are isostructural (monoclinic, space group P2(1)/n (No. 14)) with almost identical unit cell dimensions (7b, a = 14.511(5) A, b = 12.797(2) A, c = 16.476(6) A, beta = 115.92(2); 8b, a = 14.478(8) A, b = 12.794(3) A, c = 16.442(9) A, beta = 116.01(2)) and molecular geometries. Treatment of either fac-[M(CO)(3)(P-P)(eta(2)-SO(2))] or mer-[M(CO)(3)(P-P)(eta(1)-SO(2))] with diazomethane yielded the sulfene complexes mer-[M(CO)(3)(P-P)(eta(2)-CH(2)SO(2))] (M = Mo (9), W (10)). The structure of 10a was determined crystallographically: monoclinic, space group P2(1)/n (No. 14), a = 11.719(2) A, b = 17.392(4) A, c = 13.441(3) A, beta = 95.58(2). The tungsten atom resides in the center of a distorted pentagonal bipyramid. The sulfene ligand occupies two adjacent equatorial sites with the bond distances W-C, 2.322(13) A, W-S, 2.353(3) A, and S-C, 1.721(12) A. The latter equals the S-C single bond distance in thiirane S,S-dioxide, indicating a high degree of charge density transfer into the LUMO of the sulfene ligand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA