Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(6): 1010-1031, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36282542

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.


Asunto(s)
Distrofia Muscular de Emery-Dreifuss , Humanos , Distrofia Muscular de Emery-Dreifuss/genética , Mutación , Fibrosis , Biomarcadores
2.
Mol Cell ; 62(6): 834-847, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264872

RESUMEN

Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.


Asunto(s)
Posicionamiento de Cromosoma , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/genética , Proteínas de la Membrana/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Animales , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Humanos , Canales Iónicos/metabolismo , Cinética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Interferencia de ARN , Transfección
3.
Genome Res ; 27(7): 1126-1138, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28424353

RESUMEN

The 3D organization of the genome changes concomitantly with expression changes during hematopoiesis and immune activation. Studies have focused either on lamina-associated domains (LADs) or on topologically associated domains (TADs), defined by preferential local chromatin interactions, and chromosome compartments, defined as higher-order interactions between TADs sharing functionally similar states. However, few studies have investigated how these affect one another. To address this, we mapped LADs using Lamin B1-DamID during Jurkat T-cell activation, finding significant genome reorganization at the nuclear periphery dominated by release of loci frequently important for T-cell function. To assess how these changes at the nuclear periphery influence wider genome organization, our DamID data sets were contrasted with TADs and compartments. Features of specific repositioning events were then tested by fluorescence in situ hybridization during T-cell activation. First, considerable overlap between TADs and LADs was observed with the TAD repositioning as a unit. Second, A1 and A2 subcompartments are segregated in 3D space through differences in proximity to LADs along chromosomes. Third, genes and a putative enhancer in LADs that were released from the periphery during T-cell activation became preferentially associated with A2 subcompartments and were constrained to the relative proximity of the lamina. Thus, lamina associations influence internal nuclear organization, and changes in LADs during T-cell activation may provide an important additional mode of gene regulation.


Asunto(s)
Cromosomas Humanos/metabolismo , Elementos de Facilitación Genéticos , Lamina Tipo B/metabolismo , Activación de Linfocitos , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Linfocitos T/metabolismo , Cromosomas Humanos/genética , Humanos , Células Jurkat , Lamina Tipo B/genética , Proteínas de Neoplasias/genética , Membrana Nuclear/genética , Linfocitos T/citología
4.
Methods ; 157: 88-99, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445179

RESUMEN

DamID, a method to identify DNA associating with a particular protein, was originally developed for use in immortalized tissue culture lines. The power of this technique has led to its adaptation for a number of additional systems. Here we report adaptations for its use in primary cells isolated from rodents with emphasis on the challenges this presents. Specifically, we present several modifications that allow the method to be performed in mouse acutely isolated primary hepatocytes while seemingly maintaining tissue genome architecture. We also describe the downstream bioinformatic analysis necessary to identify LADs and discuss some of the parameters and their effects with regards to the sensitivity of the method.


Asunto(s)
Cromatina/genética , ADN/aislamiento & purificación , Lamina Tipo B/genética , Cultivo Primario de Células/métodos , Animales , ADN/genética , Metilación de ADN/genética , Genoma/genética , Hepatocitos/metabolismo , Lamina Tipo B/química , Ratones
5.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474255

RESUMEN

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Asunto(s)
Cariotipo Anormal , Inestabilidad Genómica , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Progeria/genética , Telomerasa/genética , Homeostasis del Telómero , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerasa/metabolismo
6.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652739

RESUMEN

The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.


Asunto(s)
Membrana Nuclear/metabolismo , Animales , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Imagen Molecular/métodos , Membrana Nuclear/ultraestructura , Imagen Óptica/métodos
7.
Genome Res ; 25(4): 478-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644835

RESUMEN

While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.


Asunto(s)
Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Mieloma Múltiple/genética , Células Madre Neoplásicas/citología , Células Plasmáticas/citología , Diferenciación Celular/genética , Línea Celular Tumoral , Islas de CpG/genética , ADN de Neoplasias/genética , Regulación hacia Abajo/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
8.
Biochem Soc Trans ; 45(6): 1333-1344, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29150524

RESUMEN

Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.


Asunto(s)
Neoplasias de la Mama/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo
9.
Curr Opin Neurol ; 29(5): 651-61, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27389815

RESUMEN

PURPOSE OF REVIEW: Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS: New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY: Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.


Asunto(s)
Enfermedades Musculares/genética , Membrana Nuclear/genética , Transducción de Señal/genética , Animales , Humanos , Enfermedades Musculares/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
10.
Semin Cancer Biol ; 23(2): 125-37, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311402

RESUMEN

Although its properties have long been used for both typing and prognosis of various tumors, the nuclear envelope (NE) itself and its potential roles in tumorigenesis are only beginning to be understood. Historically viewed as merely a protective barrier, the nuclear envelope is now linked to a wide range of functions. Nuclear membrane proteins connect the nucleus to the cytoskeleton on one side and to chromatin on the other. Several newly identified nuclear envelope functions associated with these connections intersect with cancer pathways. For example, the nuclear envelope could affect genome stability by tethering chromatin. Some nuclear envelope proteins affect cell cycle regulation by directly binding to the master regulator pRb, others by interacting with TGF-ß and Smad signaling cascades, and others by affecting the mitotic spindle. Finally, the NE directly affects cytoskeletal organization and can also influence cell migration in metastasis. In this review we discuss the link between the nuclear envelope and cellular defects that are common in cancer cells, and we show that NE proteins are often aberrantly expressed in tumors. The NE represents a potential reservoir of diagnostic and prognostic markers in cancer.


Asunto(s)
Neoplasias/etiología , Membrana Nuclear/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/fisiología , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Humanos , Laminas/genética , Laminas/metabolismo , Laminas/fisiología , Modelos Biológicos , Neoplasias/genética , Neoplasias/patología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Forma de los Orgánulos/fisiología
11.
Adv Exp Med Biol ; 773: 209-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563350

RESUMEN

For many years, the nuclear envelope was viewed as a passive barrier that separates the genetic material in the nucleus from the cytoplasm of the cell and permits regulated trafficking of various molecules through the nuclear pores. Research in the past two decades has shown that the nuclear envelope is a complex cellular compartment, which harbors tissue-specific resident proteins, extensively interacts with chromatin and contributes to spatial genome organization and regulation of gene expression. Chromatin at the nuclear periphery is organized into active and silenced domains punctuated by insulator elements. The nuclear envelope transmembrane proteins and the nuclear lamina serve as anchoring sites for heterochromatin. They recruit chromatin that has been modified with specific epigenetic marks, provide silencing factors that add new epigenetic modifications to genes located at the nuclear periphery, and sequester transcription factors away from the nuclear interior. On the other hand, proteins of the nuclear pores anchor as well as help generate active chromatin, promote transcription, and coordinate gene expression with mRNA export. The importance of these functions is underscored by aberrant distribution of peripheral chromatin and changes in gene expression that occur in cancer and heritable human diseases linked to mutations in nuclear envelope proteins. Although many mechanistic questions addressing the role of the nuclear envelope in genome organization and function have been answered in recent years, a great deal remains to be discovered in this exciting and rapidly moving field.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Membrana Nuclear/fisiología , Humanos
12.
Adv Exp Med Biol ; 773: 5-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563341

RESUMEN

Cancer has been diagnosed for millennia, but its cellular nature only began to be understood in the mid-nineteenth century when advances in microscopy allowed detailed specimen observations. It was soon noted that cancer cells often possessed nuclei that were altered in size and/or shape. This became an important criterion for cancer diagnosis that continues to be used today. The mechanisms linking nuclear abnormalities and cancer only started to be understood in the second half of the twentieth century, with the discovery of nuclear lamina composition differences in cancer cells compared to normal cells. The nuclear envelope, rather than providing a mere physical barrier between the genetic material in the nucleus and the cytoplasm, is a very important functional hub for many cellular processes. In this review we give an overview of the links between cancer biology and nuclear envelope, from the early days of microscopy until the present day's understanding of some of the molecular mechanisms behind those links.


Asunto(s)
Neoplasias/diagnóstico , Membrana Nuclear/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias/fisiopatología
13.
Adv Exp Med Biol ; 773: 165-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24563348

RESUMEN

There are many ways that the nuclear envelope can influence the cell cycle. In addition to roles of lamins in regulating the master cell cycle regulator pRb and nuclear envelope breakdown in mitosis, many other nuclear envelope proteins influence the cell cycle through regulatory or structural functions. Of particular note among these are the nuclear envelope transmembrane proteins (NETs) that appear to influence cell cycle regulation through multiple separate mechanisms. Some NETs and other nuclear envelope proteins accumulate on the mitotic spindle, suggesting functional or structural roles in the cell cycle. In interphase exogenous overexpression of some NETs promotes an increase in G1 populations, while others promote an increase in G2/M populations, sometimes associated with the induction of senescence. Intriguingly, most of the NETs linked to the cell cycle are highly restricted in their tissue expression; thus, their misregulation in cancer could contribute to the many tissue-specific types of cancer.


Asunto(s)
Ciclo Celular , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Membrana Nuclear/metabolismo , Humanos , Neoplasias/metabolismo
14.
J Biol Chem ; 287(15): 12277-92, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22334672

RESUMEN

The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/ß-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.


Asunto(s)
Transporte Activo de Núcleo Celular , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Núcleo Celular/virología , Células HeLa , Herpesvirus Humano 8/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Inmunoprecipitación , Señales de Exportación Nuclear , Señales de Localización Nuclear , Poro Nuclear/virología , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Mapeo Peptídico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido
15.
Cell Mol Life Sci ; 69(13): 2205-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22327555

RESUMEN

The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.


Asunto(s)
Núcleo Celular/metabolismo , Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/fisiología
16.
Mol Cell Proteomics ; 10(1): M110.003129, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20876400

RESUMEN

Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animales , Diferenciación Celular , Fraccionamiento Celular , Línea Celular , Humanos , Espectrometría de Masas , Proteínas de la Membrana/química , Ratones , Músculo Esquelético/citología , Músculo Esquelético/ultraestructura , Membrana Nuclear/ultraestructura , Proteínas Nucleares/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
17.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201261

RESUMEN

Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.


Asunto(s)
Estradiol , Neoplasias de la Próstata , Masculino , Humanos , Estradiol/farmacología , Propionatos , Neoplasias de la Próstata/tratamiento farmacológico , Próstata , Estrógenos , Oxidorreductasas
18.
Mol Cell Proteomics ; 9(12): 2571-85, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20693407

RESUMEN

A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.


Asunto(s)
Genoma Humano , Leucocitos/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteoma , Animales , Western Blotting , Línea Celular , Humanos , Microscopía Fluorescente , Ratas
19.
Front Cell Dev Biol ; 10: 1022723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299481

RESUMEN

Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.

20.
Nat Commun ; 13(1): 321, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027552

RESUMEN

Little is known about how the observed fat-specific pattern of 3D-spatial genome organisation is established. Here we report that adipocyte-specific knockout of the gene encoding nuclear envelope transmembrane protein Tmem120a disrupts fat genome organisation, thus causing a lipodystrophy syndrome. Tmem120a deficiency broadly suppresses lipid metabolism pathway gene expression and induces myogenic gene expression by repositioning genes, enhancers and miRNA-encoding loci between the nuclear periphery and interior. Tmem120a-/- mice, particularly females, exhibit a lipodystrophy syndrome similar to human familial partial lipodystrophy FPLD2, with profound insulin resistance and metabolic defects that manifest upon exposure to an obesogenic diet. Interestingly, similar genome organisation defects occurred in cells from FPLD2 patients that harbour nuclear envelope protein encoding LMNA mutations. Our data indicate TMEM120A genome organisation functions affect many adipose functions and its loss may yield adiposity spectrum disorders, including a miRNA-based mechanism that could explain muscle hypertrophy in human lipodystrophy.


Asunto(s)
Sitios Genéticos , Canales Iónicos/deficiencia , Lipodistrofia/genética , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Metabolismo de los Hidratos de Carbono , Dieta Alta en Grasa , Elementos de Facilitación Genéticos/genética , Femenino , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Canales Iónicos/metabolismo , Lamina Tipo B/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos/genética , Membrana Nuclear/metabolismo , Obesidad/genética , Especificidad de Órganos , Oxidación-Reducción , ARN/genética , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA