Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Chem ; 67(4): 631-641, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33491069

RESUMEN

BACKGROUND: Multiple technologies are available for detection of circulating tumor cells (CTCs), but standards to evaluate their technical performance are still lacking. This limits the applicability of CTC analysis in clinic routine. Therefore, in the context of the CANCER-ID consortium, we established a platform to assess technical validity of CTC detection methods in a European multi-center setting using non-small cell lung cancer (NSCLC) as a model. METHODS: We characterized multiple NSCLC cell lines to define cellular models distinct in their phenotype and molecular characteristics. Standardized tumor-cell-bearing blood samples were prepared at a central laboratory and sent to multiple European laboratories for processing according to standard operating procedures. The data were submitted via an online tool and centrally evaluated. Five CTC-enrichment technologies were tested. RESULTS: We could identify 2 cytokeratin expressing cell lines with distinct levels of EpCAM expression: NCI-H441 (EpCAMhigh, CKpos) and NCI-H1563 (EpCAMlow, CKpos). Both spiked tumor cell lines were detected by all technologies except for the CellSearch system that failed to enrich EpCAMlow NCI-H1563 cells. Mean recovery rates ranged between 49% and 75% for NCI-H411 and 32% and 76% for NCI-H1563 and significant differences were observed between the tested methods. CONCLUSIONS: This multi-national proficiency testing of CTC-enrichment technologies has importance in the establishment of guidelines for clinically applicable (pre)analytical workflows and the definition of minimal performance qualification requirements prior to clinical validation of technologies. It will remain in operation beyond the funding period of CANCER-ID in the context of the European Liquid Biopsy Society (ELBS).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico
2.
Clin Chem ; 66(1): 149-160, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628139

RESUMEN

BACKGROUND: In cancer patients, circulating cell-free DNA (ccfDNA) can contain tumor-derived DNA (ctDNA), which enables noninvasive diagnosis, real-time monitoring, and treatment susceptibility testing. However, ctDNA fractions are highly variable, which challenges downstream applications. Therefore, established preanalytical work flows in combination with cost-efficient and reproducible reference materials for ccfDNA analyses are crucial for analytical validity and subsequently for clinical decision-making. METHODS: We describe the efforts of the Innovative Medicines Initiative consortium CANCER-ID (http://www.cancer-id.eu) for comparing different technologies for ccfDNA purification, quantification, and characterization in a multicenter setting. To this end, in-house generated mononucleosomal DNA (mnDNA) from lung cancer cell lines carrying known TP53 mutations was spiked in pools of plasma from healthy donors generated from 2 different blood collection tubes (BCTs). ccfDNA extraction was performed at 15 partner sites according to their respective routine practice. Downstream analysis of ccfDNA with respect to recovery, integrity, and mutation analysis was performed centralized at 4 different sites. RESULTS: We demonstrate suitability of mnDNA as a surrogate for ccfDNA as a process quality control from nucleic acid extraction to mutation detection. Although automated extraction protocols and quantitative PCR-based quantification methods yielded the most consistent and precise results, some kits preferentially recovered spiked mnDNA over endogenous ccfDNA. Mutated TP53 fragments derived from mnDNA were consistently detected using both next-generation sequencing-based deep sequencing and droplet digital PCR independently of BCT. CONCLUSIONS: This comprehensive multicenter comparison of ccfDNA preanalytical and analytical work flows is an important contribution to establishing evidence-based guidelines for clinically feasible (pre)analytical work flows.


Asunto(s)
Ácidos Nucleicos Libres de Células/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recolección de Muestras de Sangre , Línea Celular Tumoral , Ácidos Nucleicos Libres de Células/química , Ácidos Nucleicos Libres de Células/normas , ADN Tumoral Circulante/sangre , Análisis Mutacional de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Neoplasias/genética , Neoplasias/patología , Nucleosomas/genética , Polimorfismo de Nucleótido Simple , Fase Preanalítica , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Proteína p53 Supresora de Tumor/genética
3.
Clin Chem ; 65(9): 1132-1140, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235535

RESUMEN

BACKGROUND: In human body fluids, microRNA (miRNA) can be found as circulating cell-free miRNA (cfmiRNA), as well as secreted into extracellular vesicles (EVmiRNA). miRNAs are being intensively evaluated as minimally invasive liquid biopsy biomarkers in patients with cancer. The growing interest in developing clinical assays for circulating miRNA necessitates careful consideration of confounding effects of preanalytical and analytical parameters. METHODS: By using reverse transcription quantitative real-time PCR and next-generation sequencing (NGS), we compared extraction efficiencies of 5 different protocols for cfmiRNA and 2 protocols for EVmiRNA isolation in a multicentric manner. The efficiency of the different extraction methods was evaluated by measuring exogenously spiked cel-miR-39 and 6 targeted miRNAs in plasma from 20 healthy individuals. RESULTS: There were significant differences between the tested methods. Although column-based extraction methods were highly effective for the isolation of endogenous miRNA, phenol extraction combined with column-based miRNA purification and ultracentrifugation resulted in lower quality and quantity of isolated miRNA. Among all extraction methods, the ubiquitously expressed miR-16 was represented with high abundance when compared with other targeted miRNAs. In addition, the use of miR-16 as an endogenous control for normalization of quantification cycle values resulted in a decreased variability of column-based cfmiRNA extraction methods. Cluster analysis of normalized NGS counts clearly indicated a method-dependent bias. CONCLUSIONS: The choice of plasma miRNA extraction methods affects the selection of potential miRNA marker candidates and mechanistic interpretation of results, which should be done with caution, particularly across studies using different protocols.


Asunto(s)
MicroARN Circulante/sangre , MicroARN Circulante/aislamiento & purificación , Anciano , Animales , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/aislamiento & purificación , Caenorhabditis elegans/química , Fraccionamiento Químico/métodos , Vesículas Extracelulares/química , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
4.
Respir Res ; 20(1): 254, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718676

RESUMEN

BACKGROUND: Pulmonary and systemic inflammation are central features of chronic obstructive pulmonary disease (COPD). Previous studies have demonstrated relationships between biologically active extracellular matrix components, or matrikines, and COPD pathogenesis. We studied the relationships between the matrikine acetyl-proline-glycine-proline (AcPGP) in sputum and plasma and clinical features of COPD. METHODS: Sputum and plasma samples were obtained from COPD participants in the SPIROMICS cohort at enrollment. AcPGP was isolated using solid phase extraction and measured by mass spectrometry. Demographics, spirometry, quality of life questionnaires, and quantitative computed tomography (CT) imaging with parametric response mapping (PRM) were obtained at baseline. Severe COPD exacerbations were recorded at 1-year of prospective follow-up. We used linear and logistic regression models to measure associations between AcPGP and features of COPD, and Kaplan-Meier analyses to measure time-to-first severe exacerbation. RESULTS: The 182 COPD participants in the analysis were 66 ± 8 years old, 62% male, 84% White race, and 39% were current smokers. AcPGP concentrations were 0.61 ± 1.89 ng/mL (mean ± SD) in sputum and 0.60 ± 1.13 ng/mL in plasma. In adjusted linear regression models, sputum AcPGP was associated with FEV1/FVC, spirometric GOLD stage, PRM-small airways disease, and PRM-emphysema. Sputum AcPGP also correlated with severe AECOPD, and elevated sputum AcPGP was associated with shorter time-to-first severe COPD exacerbation. In contrast, plasma AcPGP was not associated with symptoms, pulmonary function, or severe exacerbation risk. CONCLUSIONS: In COPD, sputum but not plasma AcPGP concentrations are associated with the severity of airflow limitation, small airways disease, emphysema, and risk for severe AECOPD at 1-year of follow-up. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01969344 (SPIROMICS).


Asunto(s)
Glicina/sangre , Prolina/sangre , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Espirometría/métodos , Esputo/metabolismo , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Esputo/química
5.
Cancer Cell ; 10(1): 7-11, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16843261

RESUMEN

Aberrant ERBB receptor activity contributes to the development of many human cancers. Receptor overexpression, kinase domain (KD) mutations, and autocrine ligand production contribute to ERBB activation in human tumors. ERBB-targeted tyrosine kinase inhibitors (TKIs) and monoclonal antibodies are used in cancer treatment; however, clinical hurdles, including patient selection and TKI resistance, need to be overcome in order to optimize therapy. This minireview will discuss recent findings on possible mechanisms leading to ERBB-targeted therapy resistance and potential means to overcome them.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas ADAM/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/metabolismo , Receptor ErbB-4
6.
Cell Mol Life Sci ; 69(22): 3863-79, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22760497

RESUMEN

CD24 is a glycosyl-phosphatidylinositol-anchored membrane protein that is frequently over-expressed in a variety of human carcinomas and is correlated with poor prognosis. In cancer cell lines, changes of CD24 expression can alter several cellular properties in vitro and tumor growth in vivo. However, little is known about how CD24 mediates these effects. Here we have analyzed the functional consequences of CD24 knock-down or over-expression in human cancer cell lines. Depletion of CD24 reduced cell proliferation and adhesion, enhanced apoptosis, and regulated the expression of various genes some of which were identified as STAT3 target genes. Loss of CD24 reduced STAT3 and FAK phosphorylation. Diminished STAT3 activity was confirmed by specific reporter assays. We found that reduced STAT3 activity after CD24 knock-down was accompanied by altered Src phosphorylation. Silencing of Src, similar to CD24, targeted the expression of prototype STAT3-regulated genes. Likewise, the over-expression of CD24 augmented Src-Y416 phosphorylation, the recruitment of Src into lipid rafts and the expression of STAT3-dependent target genes. An antibody to CD24 was effective in reducing tumor growth of A549 lung cancer and BxPC3 pancreatic cancer xenografts in mice. Antibody treatment affected the level of Src-phosphorylation in the tumor and altered the expression of STAT3 target genes. Our results provide evidence that CD24 regulates STAT3 and FAK activity and suggest an important role of Src in this process. Finally, the targeting of CD24 by antibodies could represent a novel route for tumor therapy.


Asunto(s)
Antígeno CD24/metabolismo , Adhesión Celular/genética , Quinasa 1 de Adhesión Focal/metabolismo , Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Familia-src Quinasas/metabolismo , Animales , Anticuerpos Monoclonales , Apoptosis/genética , Antígeno CD24/genética , Antígeno CD24/inmunología , Línea Celular Tumoral , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Trasplante Heterólogo , Familia-src Quinasas/genética
7.
Cancers (Basel) ; 14(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053556

RESUMEN

To improve tumor selectivity of cytotoxic agents, we designed VIP236, a small molecule-drug conjugate consisting of an αVß3 integrin binder linked to a modified camptothecin payload (VIP126), which is released by the enzyme neutrophil elastase (NE) in the tumor microenvironment (TME). The tumor targeting and pharmacokinetics of VIP236 were studied in tumor-bearing mice by in vivo near-infrared imaging and by analyzing tumor and plasma samples. The efficacy of VIP236 was investigated in a panel of cancer cell lines in vitro, and in MX-1, NCI-H69, and SW480 murine xenograft models. Imaging studies with the αVß3 binder demonstrated efficient tumor targeting. Administration of VIP126 via VIP236 resulted in a 10-fold improvement in the tumor/plasma ratio of VIP126 compared with VIP126 administered alone. Unlike SN38, VIP126 is not a substrate of P-gp and BCRP drug transporters. VIP236 presented strong cytotoxic activity in the presence of NE. VIP236 treatment resulted in tumor regressions and very good tolerability in all in vivo models tested. VIP236 represents a novel approach for delivering a potent cytotoxic agent by utilizing αVß3 as a targeting moiety and NE in the TME to release the VIP126 payload-designed for high permeability and low efflux-directly into the tumor stroma.

8.
JCO Precis Oncol ; 5: 1540-1553, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34994642

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICIs) are increasingly being used in non-small-cell lung cancer (NSCLC), yet biomarkers predicting their benefit are lacking. We evaluated if on-treatment changes of circulating tumor DNA (ctDNA) from ICI start (t0) to after two cycles (t1) assessed with a commercial panel could identify patients with NSCLC who would benefit from ICI. PATIENTS AND METHODS: The molecular ctDNA response was evaluated as a predictor of radiographic tumor response and long-term survival benefit of ICI. To maximize the yield of ctDNA detection, de novo mutation calling was performed. Furthermore, the impact of clonal hematopoiesis (CH)-related variants as a source of biologic noise was investigated. RESULTS: After correction for CH-related variants, which were detected in 75 patients (44.9%), ctDNA was detected in 152 of 167 (91.0%) patients. We observed only a fair agreement of the molecular and radiographic response, which was even more impaired by the inclusion of CH-related variants. After exclusion of those, a ≥ 50% molecular response improved progression-free survival (10 v 2 months; hazard ratio [HR], 0.55; 95% CI, 0.39 to 0.77; P = .0011) and overall survival (18.4 v 5.9 months; HR, 0.44; 95% CI, 0.31 to 0.62; P < .0001) compared with patients not achieving this end point. After adjusting for clinical variables, ctDNA response and STK11/KEAP1 mutations (HR, 2.08; 95% CI, 1.4 to 3.0; P < .001) remained independent predictors for overall survival, irrespective of programmed death ligand-1 expression. A landmark survival analysis at 2 months (n = 129) provided similar results. CONCLUSION: On-treatment changes of ctDNA in plasma reveal predictive information for long-term clinical benefit in ICI-treated patients with NSCLC. A broader NSCLC patient coverage through de novo mutation calling and the use of a variant call set excluding CH-related variants improved the classification of molecular responders, but had no significant impact on survival.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN Tumoral Circulante/sangre , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Resultado del Tratamiento
9.
Mol Aspects Med ; 72: 100844, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31959359

RESUMEN

Liquid biopsy holds great promise to complement traditional analysis on cancerous tissue during clinical management of cancer: screening of patients, (early) disease diagnosis, prognosis, therapy selection as well as early response to treatment and disease monitoring. Among emerging circulating biomarkers, cell-free miRNA (cfmiRNA) may have potential in detecting lung cancer and following the course of the disease. Furthermore, several studies highlighted the possibility to utilize these regulatory RNAs to obtain prognostic information as well as to verify patient's response towards treatment. However, despite these findings, cfmiRNA is not used in the clinical practice as biomarkers to date, since their clinical utility and validity has not been confirmed in prospective clinical studies yet. In addition, there is no consensus on standardized (pre)analytical procedures. In this review, we present an overview of cfmiRNA biomarker candidates for clinical management of lung cancer and we discuss the issue of assay standardization.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARN Circulante/análisis , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , MicroARN Circulante/sangre , Humanos , Neoplasias Pulmonares/diagnóstico , Manejo de Especímenes/métodos
10.
Crit Rev Oncol Hematol ; 156: 103112, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33035734

RESUMEN

The promise of precision medicine as a model to customize health care to the individual patient is heavily dependent upon new genetic tools to classify and characterize diseases and their hosts. Liquid biopsies serve as a safe alternative to solid biopsies and are thus a useful and critical component to fully realizing personalized medicine. The International Liquid Biopsy Standardization Alliance (ILSA) comprises organizations and foundations that recognize the importance of working towards the global use of liquid biopsy in oncology practice to support clinical decision making and regulatory considerations and seek to promote it in their communities. This manuscript provides an overview of the independent liquid biopsy- and standardization-based programs engaged with ILSA, their objectives and progress to date, and the tools and resources each is developing to contribute to the field. It also describes the unique areas of effort as well as synergy found within the group.


Asunto(s)
Células Neoplásicas Circulantes , Biomarcadores de Tumor , Biopsia , Humanos , Biopsia Líquida , Medicina de Precisión
11.
Cancers (Basel) ; 12(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380788

RESUMEN

BACKGROUND: Among emerging circulating biomarkers, miRNA has the potential to detect lung cancer and follow the course of the disease. However, miRNA analysis deserves further standardization before implementation into clinical trials or practice. Here, we performed international ring experiments to explore (pre)-analytical factors relevant to the outcome of miRNA blood tests in the context of the EU network CANCER-ID. METHODS: Cell-free (cfmiRNA) and extracellular vesicle-derived miRNA (EVmiRNA) were extracted using the miRNeasy Serum/Plasma Advanced, and the ExoRNeasy Maxi kit, respectively, in a plasma cohort of 27 NSCLC patients and 20 healthy individuals. Extracted miRNA was investigated using small RNA sequencing and hybridization platforms. Validation of the identified miRNA candidates was performed using quantitative PCR. RESULTS: We demonstrate the highest read counts in healthy individuals and NSCLC patients using QIAseq. Moreover, QIAseq showed 15.9% and 162.9% more cfmiRNA and EVmiRNA miRNA counts, respectively, in NSCLC patients compared to healthy control samples. However, a systematic comparison of selected miRNAs revealed little agreement between high-throughput platforms, thus some miRNAs are detected with one technology, but not with the other. Adding to this, 35% (9 of 26) of selected miRNAs in the cfmiRNA and 42% (11 of 26) in the EVmiRNA fraction were differentially expressed by at least one qPCR platform; about half of the miRNAs (54%) were concordant for both platforms. CONCLUSIONS: Changing of (pre)-analytical methods of miRNA analysis has a significant impact on blood test results and is therefore a major confounding factor. In addition, to confirm miRNA biomarker candidates screening studies should be followed by targeted validation using an independent platform or technology.

12.
Breast Cancer Res ; 11(3): R32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19473496

RESUMEN

INTRODUCTION: In breast cancer, deregulation of the WNT signaling pathway occurs by autocrine mechanisms. WNT ligands and Frizzled receptors are coexpressed in primary breast tumors and cancer cell lines. Moreover, many breast tumors show hypermethylation of the secreted Frizzled-related protein 1 (sFRP1) promoter region, causing low expression of this WNT antagonist. We have previously shown that the WNT pathway influences proliferation of breast cancer cell lines via activation of canonical signaling and epidermal growth factor receptor transactivation, and that interference with WNT signaling reduces proliferation. Here we examine the role of WNT signaling in breast tumor cell migration and on xenograft outgrowth. METHODS: The breast cancer cell line MDA-MB-231 was used to study WNT signaling. We examined the effects of activating or blocking the WNT pathway on cell motility by treatment with WNT ligands or by ectopic sFPR1 expression, respectively. The ability of sFRP1-expressing MDA-MB-231 cells to grow as xenografts was also tested. Microarray analyses were carried out to identify targets with roles in MDA-MB-231/sFRP1 tumor growth inhibition. RESULTS: We show that WNT stimulates the migratory ability of MDA-MB-231 cells. Furthermore, ectopic expression of sFRP1 in MDA-MB-231 cells blocks canonical WNT signaling and decreases their migratory potential. Moreover, the ability of MDA-MB-231/sFRP1-expressing cells to grow as xenografts in mammary glands and to form lung metastases is dramatically impaired. Microarray analyses led to the identification of two genes, CCND1 and CDKN1A, whose expression level is selectively altered in vivo in sFRP1-expressing tumors. The encoded proteins cyclin D1 and p21Cip1 were downregulated and upregulated, respectively, in sFRP1-expressing tumors, suggesting that they are downstream mediators of WNT signaling. CONCLUSIONS: Our results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells. WNT stimulates tumor cell motility; conversely sFRP1-mediated WNT pathway blockade reduces motility. Moreover, ectopic sFRP1 expression in MDA-MB-231 cells has a strong negative impact on tumor outgrowth and blocked lung metastases. These results suggest that interference with WNT signaling using sFRP1 to block the ligand- receptor interaction may be a valid therapeutic approach in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Mamarias Animales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Wnt/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Transducción de Señal
13.
Biochem Biophys Res Commun ; 386(3): 449-54, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19523451

RESUMEN

Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of beta-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Proteínas Wnt/metabolismo , Conexina 43/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Receptores Frizzled/genética , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/farmacología , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Receptor TIE-2/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Transcripción Genética , Cordón Umbilical/citología , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteína Wnt-5a , Proteína Wnt3 , Proteína Wnt3A
14.
Cells ; 8(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374957

RESUMEN

Over the last decade, the immune checkpoint blockade targeting the programmed death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis has improved progression-free and overall survival of advanced non-small cell lung cancer (NSCLC) patients. PD-L1 tumor expression, along with tumor mutational burden, is currently being explored as a predictive biomarker for responses to immune checkpoint inhibitors (ICIs). However, lung cancer patients may have insufficient tumor tissue samples and the high bleeding risk often prevents additional biopsies and, as a consequence, immunohistological evaluation of PD-L1 expression. In addition, PD-L1 shows a dynamic expression profile and can be influenced by intratumoral heterogeneity as well as the immune cell infiltrate in the tumor and its microenvironment, influencing the response rate to PD-1/PD-L1 axis ICIs. Therefore, to identify subgroups of patients with advanced NSCLC that will most likely benefit from ICI therapies, molecular characterization of PD-L1 expression in circulating tumor cells (CTCs) might be supportive. In this review, we highlight the use of CTCs as a complementary diagnostic tool for PD-L1 expression analysis in advanced NSCLC patients. In addition, we examine technical issues of PD-L1 measurement in tissue as well as in CTCs.


Asunto(s)
Antígeno B7-H1/fisiología , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Células Neoplásicas Circulantes/metabolismo , Antineoplásicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Células Neoplásicas Circulantes/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
15.
Comput Struct Biotechnol J ; 16: 190-195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977481

RESUMEN

We discuss the current status of liquid biopsy and its advantages and challenges with a focus on pre-analytical sample handling, technologies and workflows. The potential of circulating tumor cells and circulating tumor DNA is pointed out and an overview of corresponding technologies is given.

16.
Breast Cancer Res ; 9(5): R63, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17897439

RESUMEN

BACKGROUND: De-regulation of the wingless and integration site growth factor (WNT) signaling pathway via mutations in APC and Axin, proteins that target beta-catenin for destruction, have been linked to various types of human cancer. These genetic alterations rarely, if ever, are observed in breast tumors. However, various lines of evidence suggest that WNT signaling may also be de-regulated in breast cancer. Most breast tumors show hypermethylation of the promoter region of secreted Frizzled-related protein 1 (sFRP1), a negative WNT pathway regulator, leading to downregulation of its expression. As a consequence, WNT signaling is enhanced and may contribute to proliferation of human breast tumor cells. We previously demonstrated that, in addition to the canonical WNT/beta-catenin pathway, WNT signaling activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mouse mammary epithelial cells via epidermal growth factor receptor (EGFR) transactivation. METHODS: Using the WNT modulator sFRP1 and short interfering RNA-mediated Dishevelled (DVL) knockdown, we interfered with autocrine WNT signaling at the ligand-receptor level. The impact on proliferation was measured by cell counting, YOPRO, and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay; beta-catenin, EGFR, ERK1/2 activation, and PARP (poly [ADP-ribose]polymerase) cleavages were assessed by Western blotting after treatment of human breast cancer cell lines with conditioned media, purified proteins, small-molecule inhibitors, or blocking antibodies. RESULTS: Phospho-DVL and stabilized beta-catenin are present in many breast tumor cell lines, indicating autocrine WNT signaling activity. Interfering with this loop decreases active beta-catenin levels, lowers ERK1/2 activity, blocks proliferation, and induces apoptosis in MDA-MB-231, BT474, SkBr3, JIMT-1, and MCF-7 cells. The effects of WNT signaling are mediated partly by EGFR transactivation in human breast cancer cells in a metalloprotease- and Src-dependent manner. Furthermore, Wnt1 rescues estrogen receptor-positive (ER+) breast cancer cells from the anti-proliferative effects of 4-hydroxytamoxifen (4-HT) and this activity can be blocked by an EGFR tyrosine kinase inhibitor. CONCLUSION: Our data show that interference with autocrine WNT signaling in human breast cancer reduces proliferation and survival of human breast cancer cells and rescues ER+ tumor cells from 4-HT by activation of the canonical WNT pathway and EGFR transactivation. These findings suggest that interference with WNT signaling at the ligand-receptor level in combination with other targeted therapies may improve the efficiency of breast cancer treatments.


Asunto(s)
Comunicación Autocrina , Neoplasias de la Mama/patología , Proliferación Celular , Receptores ErbB/metabolismo , Transducción de Señal , Activación Transcripcional , Proteína Wnt1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Western Blotting , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colágeno Tipo XI/metabolismo , Medios de Cultivo Condicionados , Proteínas Dishevelled , Activación Enzimática , Antagonistas de Estrógenos/farmacología , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/farmacología , Receptores de Estrógenos/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , beta Catenina/metabolismo , Familia-src Quinasas/metabolismo
17.
Clin Exp Metastasis ; 29(1): 27-38, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21984372

RESUMEN

CD24 is a glycosyl-phosphatidylinositol-anchored protein with mucin-type structure that resides exclusively in membrane microdomains. CD24 is often highly expressed in carcinomas and correlates with poor prognosis. Experimentally, the over-expression or depletion of CD24 alters cell proliferation, adhesion, and invasion in vitro and tumor growth in vivo. However, little is known about the mechanisms by which CD24 mediates these cellular effects. Here we have studied the mechanism of CD24-dependent cell invasion using transient CD24 knock-down or over-expression in human cancer cell lines. We show that CD24 depletion reduced tumor cell invasion and up-regulated expression of Tissue Factor Pathway Inhibitor 2 (TFPI-2), a potent inhibitor of extracellular matrix degradation that can block metastases formation and tumor cell invasion. Over-expression of CD24 in A125 cells resulted in reduced TFPI-2 expression and enhanced invasion. We provide evidence that the activity of c-Src is reduced upon CD24 knock-down. The silencing of c-Src, similar to CD24, was able to enhance TFPI-2 expression and reduce tumor cell invasion. An inverse expression of CD24 and TFPI-2 was observed by immunohistochemical analysis of primary breast cancers (N = 1,174). TFPI-2 expression was highest in CD24 negative samples and lowered with increasing CD24 expression. Patients with a CD24 low/TFPI-2 high phenotype showed significantly better survival compared to CD24 high/TFPI-2 low patients. Our results provide evidence that CD24 can regulate cell invasion via TFPI-2 and suggests a role of c-Src in this process.


Asunto(s)
Antígeno CD24/metabolismo , Genes src , Glicoproteínas/genética , Invasividad Neoplásica , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Citometría de Flujo , Glicoproteínas/metabolismo , Humanos , Inmunohistoquímica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
EMBO Rep ; 8(1): 70-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159920

RESUMEN

The developmental and oncogenic roles of MYC proteins are well established, but the transcriptional targets mediating their functions remain elusive. Using small interfering RNA-mediated knockdown in breast and cervix carcinoma cell lines, which overexpress c-MYC, we show that c-MYC independently controls metabolism and cell proliferation, and can, depending on the cells, promote or inhibit migration. We identified new c-MYC target genes in these cell lines, and show that selective regulation of some targets correlates with the phenotypic responses of these different cell lines to c-MYC depletion. Notably, we show that a positive regulation of the WNT signalling pathway contributes to c-MYC pro-mitogenic effects in breast and cervix carcinoma cells. We also show that repression of CCL5/RANTES accounts for c-MYC anti-migratory effects in specific breast cancer cells. Our combined genomic and phenotypic analysis indicates that c-MYC functions are cellular-context-dependent and that selectively regulated genes are responsible for its differential properties.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Represoras/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocina CCL5/genética , Quimiocinas CC/genética , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA