Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2204434119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745800

RESUMEN

Motivated by declines in biodiversity exacerbated by climate change, we identified a network of conservation sites designed to provide resilient habitat for species, while supporting dynamic shifts in ranges and changes in ecosystem composition. Our 12-y study involved 289 scientists in 14 study regions across the conterminous United States (CONUS), and our intent was to support local-, regional-, and national-scale conservation decisions. To ensure that the network represented all species and ecosystems, we stratified CONUS into 68 ecoregions, and, within each, we comprehensively mapped the geophysical settings associated with current ecosystem and species distributions. To identify sites most resilient to climate change, we identified the portion of each geophysical setting with the most topoclimate variability (high landscape diversity) likely to be accessible to dispersers (high local connectedness). These "resilient sites" were overlaid with conservation priority maps from 104 independent assessments to indicate current value in supporting recognized biodiversity. To identify key connectivity areas for sustaining species movement in response to climate change, we codeveloped a fine-scale representation of human modification and ran a circuit-theory-based analysis that emphasized movement potential along geographic climate gradients. Integrating areas with high values for two or more factors, we identified a representative, resilient, and connected network of biodiverse lands covering 35% of CONUS. Because the network connects climatic gradients across 250,000 biodiversity elements and multiple resilient examples of all geophysical settings in every ecoregion, it could form the spatial foundation for targeted land protection and other conservation strategies to sustain a diverse, dynamic, and adaptive world.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Estados Unidos , Biodiversidad , Cambio Climático , Movimiento
2.
Ecol Appl ; 32(1): e02468, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614272

RESUMEN

As both plant and animal species shift their ranges in response to a changing climate, maintaining connectivity between present habitat and suitable habitat in the future will become increasingly important to ensure lasting protection for biodiversity. Because the temporal period commensurate with planning for mid-century change is multi-generational for most species, connectivity designed to facilitate climate adaptation requires pathways with 'stepping-stones' between current and future habitat. These areas should have habitats suitable not only for dispersal, but for all aspects of species lifecycles. We integrated present-day land use, topographic diversity, and projections of shifting climate regimes into a single connectivity modeling approach to identify pathways for mid-century shifts in species ranges. Using Omniscape we identified climate linkages, or areas important for climate change-driven movement, as the areas with more current flow than would be expected in the absence of climate considerations. This approach identified connectivity potential between natural lands in the present climate and natural lands with future analogous climate following topo-climatically diverse routes. We then translated the model output into a strategic framework to improve interpretation and to facilitate a more direct connection with conservation action. Across modified landscapes, pathways important to climate-driven movement were highly coincident with the last remaining present-day linkages, reinforcing their importance. Across unfragmented lands, the presence of climate-adapted pathways helped inform the prioritization of conservation actions in areas where multiple connectivity options still exist. Many climate linkages follow major watercourses along elevational gradients, highlighting the importance of protecting or managing for these natural linear pathways that provide movement routes for climate adaptation. By integrating enduring landscape features with climate projections and present-day land uses, our approach reveals "no-regrets" pathways to plan for a connected landscape in an uncertain future.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Biodiversidad , Ecosistema , Plantas
3.
Ecol Appl ; 32(3): e2534, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044023

RESUMEN

Continental- and regional-scale assessments of gaps in protected area networks typically use relatively coarse range maps for well documented species groups, creating uncertainty about the fate of unexamined biodiversity and providing insufficient guidance for land managers. By building habitat suitability models for a taxonomically diverse group of 2216 imperiled plants and animals, we revealed comprehensive and detailed protection opportunities in the conterminous United States. Summing protection-weighted range-size rarity (PWRSR, the product of the percent of modeled habitat outside of protected areas and the inverse of modeled habitat extent) uncovered novel patterns of biodiversity importance. Concentrations of unprotected imperiled species in places such as the northern Sierra Nevada, central and northern Arizona, the Rocky Mountains of Utah and Colorado, southeastern Texas, southwestern Arkansas, and Florida's Lake Wales Ridge have rarely if ever been featured in continental- and regional-scale analyses. Inclusion of diverse taxa (vertebrates, freshwater mussels, crayfishes, bumble bees, butterflies, skippers, and vascular plants) partially drove these new patterns. When analyses were restricted to groups typically included in previous studies (birds, mammals, and amphibians), up to 53% of imperiled species in other groups were left out. The finer resolution of modeled inputs (990 m) also resulted in a more geographically dispersed pattern. For example, 90% of the human population of the conterminous United States lives within 50 km of modeled habitat for one or more species with high PWRSR scores. Over one-half of the habitat for 818 species occurs within federally lands managed for biodiversity protection; an additional 360 species have over one-half of their modeled habitat on federal multiple use land. Freshwater animals occur in places with poorer landscape condition but with less exposure to climate change than other groups, suggesting that habitat restoration is an important conservation strategy for these species. The results provide fine-scale, taxonomically diverse inputs for local and regional priority-setting and show that although protection efforts are still widely needed on private lands, notable gains can be achieved by increasing protection status on selected federal lands.


Asunto(s)
Mariposas Diurnas , Conservación de los Recursos Naturales , Animales , Biodiversidad , Aves , Ecosistema , Mamíferos
4.
Conserv Biol ; 33(2): 239-249, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30311266

RESUMEN

Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.


Aplicaciones de la Teoría de Circuitos a la Conservación y a la Ciencia de la Conectividad Resumen Quienes practican la conservación han reconocido durante mucho tiempo que la conectividad ecológica es una prioridad mundial para la preservación de la biodiversidad y el funcionamiento del ecosistema. Durante los primeros años de la ciencia de la conservación los ecólogos difundieron los principios de la biografía de islas para evaluar la conectividad con base en la proximidad entre el origen y el fragmento, así como otras medidas derivadas de los mapas binarios de los hábitats. Entre 2006 y 2008 el fallecido Brad McRae introdujo la teoría de circuitos como una estrategia alternativa para modelar el flujo génico y la dispersión o las rutas de movimiento de los organismos. McRae propuso conceptos y medidas de la teoría de circuitos eléctricos como una manera robusta para cuantificar el movimiento a lo largo de múltiples caminos posibles en un paisaje, no solamente a lo largo de un camino o corredor de menor costo. La teoría de circuitos ofrece muchos enlaces teóricos, conceptuales y prácticos con la ciencia de la conservación. Revisamos 459 estudios recientes que citan la teoría de circuitos o el software de fuente abierta Circuitscape. Nos enfocamos en las aplicaciones de la teoría de circuitos a la ciencia y a la práctica de la conservación de la conectividad, incluyendo temas como la genética poblacional y del paisaje, movimiento y caminos de dispersión de los organismos, barreras antropogénicas de la conectividad, comportamiento ante incendios, flujo del agua, y servicios ambientales. La teoría de circuitos probablemente tenga un efecto sobre la ciencia de la conservación y quienes la practican por medio de una percepción mejorada de las dinámicas del paisaje, el movimiento animal, y los estudios de uso de hábitat, y por medio del desarrollo de nuevas herramientas de software para el análisis de datos y su visualización. La influencia de la teoría de circuitos sobre la conservación viene de la base teórica y la elegancia de la estrategia y de las colaboraciones fuertes y la comunidad activa de usuarios que han surgido recientemente. La teoría de circuitos proporciona un trampolín para el entendimiento ecológico y seguirá siendo una importante herramienta de conservación para los investigadores y practicantes en todo el mundo.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Ecología , Flujo Génico , Islas
5.
Conserv Biol ; 32(6): 1221-1232, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29920775

RESUMEN

Although a plethora of habitat-connectivity plans exists, protecting and restoring connectivity through on-the-ground action has been slow. We identified challenges to and opportunities for connectivity conservation through a literature review of project implementation, a workshop with scientists and conservation practitioners, 3 case studies of connectivity projects, and interviews with conservation professionals. Connectivity challenges and solutions tended to be context specific, dependent on land-ownership patterns, socioeconomic factors, and the policy framework. Successful connectivity implementation tended to be associated with development and promotion of a common vision among diverse sets of stakeholders, including nontraditional conservation actors, such as water districts and recreation departments, and with communication with partners and the public. Other factors that lead to successful implementation included undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as nongovernmental conservation organizations, public agencies, and private landowners, is critical to effective strategy implementation. A clear regulatory framework, including unambiguous connectivity conservation mandates, would increase public resource allocation, and incentive programs are needed to promote private sector engagement. Connectivity conservation must move more rapidly from planning to implementation. We provide an evidence-based solution composed of key elements for successful on-the-ground connectivity implementation. We identified the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Cambio Climático
6.
Conserv Biol ; 29(3): 692-701, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25923052

RESUMEN

In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Toma de Decisiones , Política Ambiental/legislación & jurisprudencia , Fenómenos Geológicos , Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia
7.
Proc Natl Acad Sci U S A ; 109(22): 8606-11, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586104

RESUMEN

As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.


Asunto(s)
Cambio Climático , Ecosistema , Mamíferos/crecimiento & desarrollo , Modelos Biológicos , Algoritmos , Animales , Clima , Geografía , Humanos , Mamíferos/clasificación , América del Norte , Dinámica Poblacional , América del Sur , Especificidad de la Especie
8.
Ecol Lett ; 15(11): 1249-1256, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22913646

RESUMEN

Efficient conservation planning requires knowledge about conservation targets, threats to those targets, costs of conservation and the marginal return to additional conservation efforts. Systematic conservation planning typically only takes a small piece of this complex puzzle into account. Here, we use a return-on-investment (ROI) approach to prioritise lands for conservation at the county level in the conterminous USA. Our approach accounts for species richness, county area, the proportion of species' ranges already protected, the threat of land conversion and land costs. Areas selected by a complementarity-based greedy heuristic using our full ROI approach provided greater averted species losses per dollar spent compared with areas selected by heuristics accounting for richness alone or richness and cost, and avoided acquiring lands not threatened with conversion. In contrast to traditional prioritisation approaches, our results highlight conservation bargains, opportunities to avert the threat of development and places where conservation efforts are currently lacking.


Asunto(s)
Conservación de los Recursos Naturales/economía , Modelos Teóricos , Biodiversidad , Análisis Costo-Beneficio , Estados Unidos
9.
PLoS One ; 10(11): e0140226, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529595

RESUMEN

Balancing society's competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species' habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide continuing support for a potentially innovative mitigation solution to environmental impacts.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Energía Solar , Biodiversidad , California , Clima Desértico , Ecosistema
10.
PLoS One ; 6(12): e28788, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174897

RESUMEN

Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Cambio Climático/economía , Conservación de los Recursos Naturales/economía , Geografía , Noroeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA