Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15309-15319, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771660

RESUMEN

The hydrogenolysis or hydrodeoxygenation of a carbonyl group, where the C═O group is converted to a CH2 group, is of significant interest in a variety of fields. A challenge in electrochemically achieving hydrogenolysis of a carbonyl group with high selectivity is that electrochemical hydrogenation of a carbonyl group, which converts the C═O group to an alcohol group (CH-OH), is demonstrated not to be the initial step of hydrogenolysis. Instead, hydrogenation and hydrogenolysis occur in parallel, and they are competing reactions. This means that although both hydrogenolysis and hydrogenation require adding H atoms to the carbonyl group, they involve different intermediates formed on the electrode surface. Thus, revealing the difference in intermediates, transition states, and kinetic barriers for hydrogenolysis and hydrogenation pathways is the key to understanding and controlling hydrogenolysis/hydrogenation selectivity of carbonyl compounds. In this study, we aimed to identify features of reactant molecules that can affect their hydrogenolysis/hydrogenation selectivity on a Zn electrode that was previously shown to promote hydrogenolysis over hydrogenation. In particular, we examined the electrochemical reduction of para-substituted benzaldehyde compounds with substituent groups having different electron donating/withdrawing abilities. Our results show a strikingly systematic impact of the substituent group where a stronger electron-donating group promotes hydrogenolysis and a stronger electron-withdrawing group promotes hydrogenation. These experimental results are presented with computational results explaining the substituent effects on the thermodynamics and kinetics of electrochemical hydrogenolysis and hydrogenation pathways, which also provide critically needed information and insights into the transition states involved with these pathways.

2.
J Am Chem Soc ; 146(23): 15718-15729, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818811

RESUMEN

Electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is promising for various practical applications, such as wastewater treatment. However, few electrocatalysts are active and selective for 2e- ORR yet are also resistant to catalyst leaching under realistic operating conditions. Here, a joint experimental and computational study reveals active and stable 2e- ORR catalysis in neutral media over layered PdSe2 with a unique pentagonal puckered ring structure type. Computations predict active and selective 2e- ORR on the basal plane and edge of PdSe2, but with distinct kinetic behaviors. Electrochemical measurements of hydrothermally synthesized PdSe2 nanoplates show a higher 2e- ORR activity than other Pd-Se compounds (Pd4Se and Pd17Se15). PdSe2 on a gas diffusion electrode can rapidly accumulate H2O2 in buffered neutral solution under a high current density. The electrochemical stability of PdSe2 is further confirmed by long device operational stability, elemental analysis of the catalyst and electrolyte, and synchrotron X-ray absorption spectroscopy. This work establishes a new efficient and stable 2e- ORR catalyst at practical current densities and opens catalyst designs utilizing the unique layered pentagonal structure motif.

3.
Chemphyschem ; : e202400176, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752882

RESUMEN

We report a deep learning-based approach to accurately predict the emission spectra of phosphorescent heteroleptic [Ir( C ∧ N ${{\rm{C}}^\wedge {\rm{N}}}$ )2( N ∧ N ${{\rm{N}}^\wedge {\rm{N}}}$ )]+ complexes, enabling the rapid discovery of novel Ir(III) chromophores for diverse applications including organic light-emitting diodes and solar fuel cells. The deep learning models utilize graph neural networks and other chemical features in architectures that reflect the inherent structure of the heteroleptic complexes, composed of C ∧ N ${{\rm{C}}^\wedge {\rm{N}}}$ and N ∧ N ${{\rm{N}}^\wedge {\rm{N}}}$ ligands, and are thus geared towards efficient training over the dataset. By leveraging experimental emission data, our models reliably predict the full emission spectra of these complexes across various emission profiles, surpassing the accuracy of conventional DFT and correlated wavefunction methods, while simultaneously achieving robustness to the presence of imperfect (noisy, low-quality) training spectra. We showcase the potential applications for these and related models for in silico prediction of complexes with tailored emission properties, as well as in "design of experiment" contexts to reduce the synthetic burden of high-throughput screening. In the latter case, we demonstrate that the models allow us to exploit a limited amount of experimental data to explore a wide range of chemical space, thus leveraging a modest synthetic effort.

4.
J Am Chem Soc ; 145(37): 20473-20484, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37682732

RESUMEN

Reductive upgrading of 5-hydroxymethylfurfural (HMF), a biomass-derived platform molecule, to 2,5-dimethylfuran (DMF), a biofuel with an energy density 40% greater than that of ethanol, involves hydrogenolysis of both the aldehyde (C═O) and the alcohol (C-OH) groups of HMF. It is known that when hydrogenation of the aldehyde occurs to form 2,5-bis(hydroxymethyl)furan (BHMF), BHMF cannot be further reduced to DMF. Thus, aldehyde hydrogenation must be suppressed to increase the selectivity for DMF production. Previously, it was shown that on a Cu electrode hydrogenolysis occurs mainly through proton-coupled electron transfer (PCET), where a proton from the solution and an electron from the electrode are transferred to the organic species. In contrast, hydrogenation occurs not only through PCET but also through hydrogen atom transfer (HAT), where a surface-adsorbed hydrogen atom (H*) is transferred to the organic species. This study shows that halide adsorption on Cu can effectively suppress HAT by decreasing the steady-state H* coverage on Cu during HMF reduction. As HAT enables only aldehyde hydrogenation, a striking suppression of BHMF is observed, thereby enhancing DMF production. We discuss how the identity and concentration of the halide, along with the reduction conditions (i.e., potential and pH), affect halide adsorption on Cu and identify when optimal halide coverages are achieved to maximize DMF selectivity. Our experimental results are presented alongside computational results that elucidate how halide adsorption affects the adsorption energy of hydrogen and the steady-state H* coverage on Cu, which provide an atomic-level understanding of all experimentally observed effects.

5.
J Phys Chem A ; 127(7): 1736-1749, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36780209

RESUMEN

π-interactions are an important motif in chemical and biochemical systems. However, due to their anisotropic electron densities and complex balance of intermolecular interactions, aromatic molecules represent an ongoing challenge for accurate and transferable force field development. Historically, ab initio force fields for aromatics have not exhibited good accuracy with respect to bulk properties or have only been used to study gas-phase dimers. Using benzene as a proof of concept, herein we show how our own ab initio MASTIFF force field incorporates an atomically anisotropic description of intermolecular interactions to yield an accurate and robust model for aromatic interactions irrespective of phase. Compared to existing models, the MASTIFF benzene force field not only is accurate for liquid phase properties but also offers transferability to the gas and solid phases. Additionally, we introduce a computationally efficient OpenMM plugin which enables customizable anisotropic intermolecular functional forms and which can be generically used in any MD simulation where a model for nonspherical atomic features is required. Overall, our results demonstrate the importance of atomic-level anisotropy in enabling next-generation ab initio force field development.

6.
J Am Chem Soc ; 144(34): 15845-15854, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35985015

RESUMEN

The practical electrosynthesis of hydrogen peroxide (H2O2) is hindered by the lack of inexpensive and efficient catalysts for the two-electron oxygen reduction reaction (2e- ORR) in neutral electrolytes. Here, we show that Ni3HAB2 (HAB = hexaaminobenzene), a two-dimensional metal organic framework (MOF), is a selective and active 2e- ORR catalyst in buffered neutral electrolytes with a linker-based redox feature that dynamically affects the ORR behaviors. Rotating ring-disk electrode measurements reveal that Ni3HAB2 has high selectivity for 2e- ORR (>80% at 0.6 V vs RHE) but lower Faradaic efficiency due to this linker redox process. Operando X-ray absorption spectroscopy measurements reveal that under argon gas the charging of the organic linkers causes a dynamic Ni oxidation state, but in O2-saturated conditions, the electronic and physical structures of Ni3HAB2 change little and oxygen-containing species strongly adsorb at potentials more cathodic than the reduction potential of the organic linker (Eredox ∼ 0.3 V vs RHE). We hypothesize that a primary 2e- ORR mechanism occurs directly on the organic linkers (rather than the Ni) when E > Eredox, but when E < Eredox, H2O2 production can also occur through Ni-mediated linker discharge. By operating the bulk electrosynthesis at a low overpotential (0.4 V vs RHE), up to 662 ppm of H2O2 can be produced in a buffered neutral solution in an H-cell due to minimized strong adsorption of oxygenates. This work demonstrates the potential of conductive MOF catalysts for 2e- ORR and the importance of understanding catalytic active sites under electrochemical operation.


Asunto(s)
Peróxido de Hidrógeno , Estructuras Metalorgánicas , Catálisis , Oxidación-Reducción , Oxígeno
7.
J Chem Phys ; 157(10): 100901, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36109220

RESUMEN

The crystallization of amorphous solids impacts fields ranging from inorganic crystal growth to biophysics. Promoting or inhibiting nanoscale epitaxial crystallization and selecting its final products underpin applications in cryopreservation, semiconductor devices, oxide electronics, quantum electronics, structural and functional ceramics, and advanced glasses. As precursors for crystallization, amorphous solids are distinguished from liquids and gases by the comparatively long relaxation times for perturbations of the mechanical stress and for variations in composition or bonding. These factors allow experimentally controllable parameters to influence crystallization processes and to drive materials toward specific outcomes. For example, amorphous precursors can be employed to form crystalline phases, such as polymorphs of Al2O3, VO2, and other complex oxides, that are not readily accessible via crystallization from a liquid or through vapor-phase epitaxy. Crystallization of amorphous solids can further be guided to produce a desired polymorph, nanoscale shape, microstructure, or orientation of the resulting crystals. These effects enable advances in applications in electronics, magnetic devices, optics, and catalysis. Directions for the future development of the chemical physics of crystallization from amorphous solids can be drawn from the structurally complex and nonequilibrium atomic arrangements in liquids and the atomic-scale structure of liquid-solid interfaces.

8.
J Chem Phys ; 156(9): 094710, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35259874

RESUMEN

Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature Tg. The result on MTDATA has been analyzed along with the results on other molecular glasses without extensive hydrogen bonds. In total, these systems cover a wide range of molecular geometries from rod-like to quasi-spherical to discotic and their surface diffusion coefficients vary by 9 orders of magnitude. We find that the variation is well explained by the existence of a steep surface mobility gradient and the anchoring of surface molecules at different depths. Quantitative analysis of these results supports a recently proposed double-exponential form for the mobility gradient: log D(T, z) = log Dv(T) + [log D0 - log Dv(T)]exp(-z/ξ), where D(T, z) is the depth-dependent diffusion coefficient, Dv(T) is the bulk diffusion coefficient, D0 ≈ 10-8 m2/s, and ξ ≈ 1.5 nm. Assuming representative bulk diffusion coefficients for these fragile glass formers, the model reproduces the presently known surface diffusion rates within 0.6 decade. Our result provides a general way to predict the surface diffusion rates in molecular glasses.

9.
J Am Chem Soc ; 143(43): 18061-18072, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677971

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are promising materials for industrial process separations, but recent literature reports have highlighted their vulnerability to acid gases (e.g., SO2, CO2, NO2, H2S), often present in practical applications. While previous work has documented the widely varying stability behavior of many ZIFs under varying (humid and dry) acid gas environments, efforts to explain or correlate these experimental observations via empirical descriptors have not succeeded. A key observation is that ZIF-71 (RHO topology) is an extraordinarily stable ZIF material, retaining both structure and porosity under prolonged humid SO2 exposure whereas many other well-known ZIFs with different linkers and topologies (such as ZIF-8) were shown to degrade. Through a combination of hybrid quantum mechanics/molecular mechanics (QM/MM) based methods and statistical mechanical models, we successfully explain this important experimental observation via atomistic investigations of the reaction mechanism. Our holistic approach reveals an ∼9 times lower average defect formation rate in ZIF-71 RHO compared to ZIF-8 SOD, leading to the conclusion that the observed experimental stability of this material rises from kinetic effects. Moreover, our analysis reveals that differing stability of the two materials is determined by the distributions of acid gas molecules, which is difficult to capture using empirical descriptors. Our results suggest wider applicability of the present approach, toward identifying tuned functional groups and topologies that move the acid gas distributions away from more reactive sites and thus allow enhanced kinetic stability.

10.
Chem Rev ; 118(7): 3681-3721, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29514005

RESUMEN

The vast chemical and structural diversity of metal-organic frameworks (MOFs) opens up the exciting possibility of "crystal engineering" MOFs tailored for particular catalytic or separation applications. Yet the process of reaction discovery, optimization, and scale-up of MOF synthesis remains extremely challenging, presenting significant obstacles to the synthetic realization of many otherwise promising MOF structures. Recently, significant new insights into the fundamental processes governing MOF nucleation and growth, as well as the relationship between reaction parameters and synthetic outcome, have been derived using powerful in situ, time-resolved and/or mechanistic studies of MOF crystallization. This Review provides a summary and associated critical analysis of the results of these and other related "direct" studies of MOF nucleation and growth, with a particular emphasis on the recent advances in instrument technologies that have enabled such studies and on the major hypotheses, theories, and models that have been used to explain MOF formation. We conclude with a summary of the major insights that have been gained from the work summarized in this Review, outlining our own perspective on potential fruitful new directions for investigation.

11.
J Phys Chem A ; 123(13): 3000-3012, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30835124

RESUMEN

We have developed a transferable ab initio intramolecular force field for zeolitic imidazolate frameworks (ZIFs), "ZIF-FF", that is capable of quantitatively describing the structural properties and relative stabilities of ZIFs. In contrast to nearly all prior force fields, ZIF-FF properly describes the relative stability of ZIF polymorphs, a crucial element in ZIF nucleation and crystal growth. Beginning with a general Amber force field (GAFF), Zn-related force field parameters were optimized against dispersion-corrected DFT-calculated properties using a genetic algorithm. We validated the resulting force field by examining bond and angle distributions, phonon density of states, mechanical properties, diffusion properties and via modeling a ZIF amorphization process. Furthermore, we find that ZIF-FF is transferable, successfully describing relative stability of various ZIF surface structures, as well as the densities of ZIFs with diverse functionalized linkers.

12.
J Chem Phys ; 151(1): 014112, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31272177

RESUMEN

We have developed a flexible, general-purpose microkinetic modeling code, Micki, to analyze complex, heterogeneously catalyzed chemical reactions based upon first-principles calculations. This Python-based code is modular and object oriented, framing the development of microkinetic models in familiar chemical terms. We also present novel approaches, incorporated into Micki, to describe diffusion limited reactions, multidentate bindings, thermodynamically consistent lateral interactions, and Brønsted-Evans-Polanyi estimates of changes in barrier heights. Micki has built-in modules for subsequent analysis of microkinetic models, including degree of rate control and rate order. As a demonstration of the power and flexibility of the code, we build a microkinetic model for the water-gas shift reaction and compare to previously published experimental results and microkinetic models, showing that Micki can quantitatively reproduce experimental turnover frequencies with minimal empirical optimization.

14.
Annu Rev Phys Chem ; 67: 467-88, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27070322

RESUMEN

Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

15.
Nat Mater ; 14(12): 1245-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26366849

RESUMEN

The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm(-2) at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n(+)-p-p(+) silicon micropyramids achieved photocurrents up to 35 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

16.
Acc Chem Res ; 48(3): 548-56, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25688596

RESUMEN

Molecular simulations have had a transformative impact on chemists' understanding of the structure and dynamics of molecular systems. Simulations can both explain and predict chemical phenomena, and they provide a unique bridge between the microscopic and macroscopic regimes. The input for such simulations is the intermolecular interactions, which then determine the forces on the constituent atoms and therefore the time evolution and equilibrium properties of the system. However, in practice, accuracy and reliability are often limited by the fidelity of the description of those very same interactions, most typically embodied approximately in mathematical form in what are known as force fields. Force fields most often utilize conceptually simple functional forms that have been parametrized to reproduce existing experimental gas phase or bulk data. Yet, reliance on empirical parametrization can sometimes introduce limitations with respect to novel chemical systems or uncontrolled errors when moving to temperatures, pressures, or environments that differ from those for which they were developed. Alternatively, it is possible to develop force fields entirely from first principles, using accurate electronic structure calculations to determine the intermolecular interactions. This introduces a new set of challenges, including the transferability of the resulting force field to related chemical systems. In response, we recently developed an alternative approach to develop force fields entirely from first-principles electronic structure calculations based on intermolecular perturbation theory. Making use of an energy decomposition analysis ensures, by construction, that the resulting force fields contain the correct balance of the various components of intermolecular interaction (exchange repulsion, electrostatics, induction, and dispersion), each treated by a functional form that reflects the underlying physics. We therefore refer to the resulting force fields as physically motivated. We find that these physically motivated force fields exhibit both high accuracy and transferability, with the latter deriving from the universality of the fundamental physical laws governing intermolecular interactions. This basic methodology has been applied to a diverse set of systems, ranging from simple liquids to nanoporous metal-organic framework materials. A key conclusion is that, in many cases, it is feasible to account for nearly all of the relevant physics of intermolecular interactions within the context of the force field. In such cases, the structural, thermodynamic, and dynamic properties of the system become naturally emergent, even in the absence of explicit parameterization to bulk properties. We also find that, quite generally, the three-body contributions to the dispersion and exchange energies in bulk liquids are crucial for quantitative accuracy in a first-principles force field, although these contributions are almost universally neglected in existing empirical force fields.

17.
Environ Sci Technol ; 50(18): 9933-42, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27438991

RESUMEN

Numerous ionizable organic micropollutants contain positively charged moieties at pH values typical of environmental systems. Describing organic cation and zwitterion interaction with dissolved natural organic matter requires explicit consideration of the pH-dependent speciation of both sorbate and sorbent. We studied the pH-, ionic strength-, and concentration-dependent binding of relatively large, organic cations and zwitterions (viz., the antibiotics clarithromycin and tetracycline) to dissolved humic acid in the absence and presence of Ca(2+) and evaluated the ability of the NICA-Donnan model to describe the data. Clarithromycin interaction with dissolved humic acid was well described by the model including the competitive effect of Ca(2+) on clarithromycin binding over a wide range of solution conditions by considering only the binding of the cationic species to low proton-affinity sites in humic acid. Tetracycline possesses multiple ionizable moieties and forms complexes with Ca(2+). An excellent fit to experimental data was achieved by considering tetracycline cation interaction with both low and high proton-affinity sites of humic acid and zwitterion interaction with high proton-affinity sites. In contrast to clarithromycin, tetracycline binding to humic acid increased in the presence of Ca(2+), especially under alkaline conditions. Model calculations indicate that this increase is due to electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid rather than due to the formation of ternary complexes, except at very low TC concentrations.


Asunto(s)
Sustancias Húmicas , Suelo , Calcio , Claritromicina , Concentración de Iones de Hidrógeno , Contaminantes del Suelo
18.
Phys Chem Chem Phys ; 17(5): 3731-40, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25557767

RESUMEN

Charge transfer across organic-inorganic interfaces plays a vital role in many important applications. Dye-semiconductor systems are the prototypical such interface and provide an excellent platform for exploring the underlying molecular-level factors that affect charge transfer dynamics and efficiency. Experiments often show multi-exponential electron injection kinetics from adsorbed dyes to a semiconductor substrate, suggesting the presence of interfacial heterogeneity. Nonetheless, both the diversity of interfacial structures and the associated implications for electronic dynamics are poorly understood. In the present work, we examine the effect of structural heterogeneity and dynamics on charge injection (as measured by dye-semiconductor electronic coupling) from plane wave density functional theory and ab initio molecular dynamics calculations on model dye-semiconductor systems. We demonstrate that dye binding motif, conformation, solvation, and corresponding thermal fluctuations significantly affect charge injection kinetics. We suggest that the experimentally observed multi-exponential kinetics likely result not only from an intrinsic heterogeneous distribution of electronic coupling strengths, but also from the conformational or solvent dynamics that in turn modulate the coupling strength and/or band alignment.

19.
J Chem Phys ; 143(10): 104109, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374020

RESUMEN

Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.

20.
Nano Lett ; 14(6): 3047-54, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24798138

RESUMEN

We report a facile chemical vapor deposition (CVD) growth of vertical heterostructures of layered metal dichalcogenides (MX2) enabled by van der Waals epitaxy. Few layers of MoS2, WS2, and WSe2 were grown uniformly onto microplates of SnS2 under mild CVD reaction conditions (<500 °C) and the heteroepitaxy between them was confirmed using cross-sectional transmission electron microscopy (TEM) and unequivocally characterized by resolving the large-area Moiré patterns that appeared on the basal planes of microplates in conventional TEM (nonsectioned). Additional photoluminescence peaks were observed in heterostructures of MoS2-SnS2, which can be understood with electronic structure calculations to likely result from electronic coupling and charge separation between MoS2 and SnS2 layers. This work opens up the exploration of large-area heterostructures of diverse MX2 nanomaterials as the material platform for electronic structure engineering of atomically thin two-dimensional (2D) semiconducting heterostructures and device applications.


Asunto(s)
Disulfuros/química , Membranas Artificiales , Molibdeno/química , Compuestos de Selenio/química , Semiconductores , Sulfuros/química , Compuestos de Estaño/química , Compuestos de Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA