Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794143

RESUMEN

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Línea Celular , Farmacorresistencia Viral , Humanos , Inmunización Pasiva , Cinética , Fusión de Membrana , Modelos Moleculares , Pruebas de Neutralización , Serina Endopeptidasas/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Internalización del Virus , Sueroterapia para COVID-19
2.
N Engl J Med ; 390(11): 994-1008, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38477987

RESUMEN

BACKGROUND: Persistent hemolytic anemia and a lack of oral treatments are challenges for patients with paroxysmal nocturnal hemoglobinuria who have received anti-C5 therapy or have not received complement inhibitors. Iptacopan, a first-in-class oral factor B inhibitor, has been shown to improve hemoglobin levels in these patients. METHODS: In two phase 3 trials, we assessed iptacopan monotherapy over a 24-week period in patients with hemoglobin levels of less than 10 g per deciliter. In the first, anti-C5-treated patients were randomly assigned to switch to iptacopan or to continue anti-C5 therapy. In the second, single-group trial, patients who had not received complement inhibitors and who had lactate dehydrogenase (LDH) levels more than 1.5 times the upper limit of the normal range received iptacopan. The two primary end points in the first trial were an increase in the hemoglobin level of at least 2 g per deciliter from baseline and a hemoglobin level of at least 12 g per deciliter, each without red-cell transfusion; the primary end point for the second trial was an increase in hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. RESULTS: In the first trial, 51 of the 60 patients who received iptacopan had an increase in the hemoglobin level of at least 2 g per deciliter from baseline, and 42 had a hemoglobin level of at least 12 g per deciliter, each without transfusion; none of the 35 anti-C5-treated patients attained the end-point levels. In the second trial, 31 of 33 patients had an increase in the hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. In the first trial, 59 of the 62 patients who received iptacopan and 14 of the 35 anti-C5-treated patients did not require or receive transfusion; in the second trial, no patients required or received transfusion. Treatment with iptacopan increased hemoglobin levels, reduced fatigue, reduced reticulocyte and bilirubin levels, and resulted in mean LDH levels that were less than 1.5 times the upper limit of the normal range. Headache was the most frequent adverse event with iptacopan. CONCLUSIONS: Iptacopan treatment improved hematologic and clinical outcomes in anti-C5-treated patients with persistent anemia - in whom iptacopan showed superiority to anti-C5 therapy - and in patients who had not received complement inhibitors. (Funded by Novartis; APPLY-PNH ClinicalTrials.gov number, NCT04558918; APPOINT-PNH ClinicalTrials.gov number, NCT04820530.).


Asunto(s)
Anemia Hemolítica , Factor B del Complemento , Inactivadores del Complemento , Hemoglobinas , Hemoglobinuria Paroxística , Humanos , Administración Oral , Anemia Hemolítica/complicaciones , Complemento C5/antagonistas & inhibidores , Factor B del Complemento/antagonistas & inhibidores , Inactivadores del Complemento/administración & dosificación , Inactivadores del Complemento/efectos adversos , Inactivadores del Complemento/uso terapéutico , Transfusión de Eritrocitos , Cefalea/inducido químicamente , Hemoglobinas/análisis , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemoglobinuria Paroxística/etiología , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Cell ; 148(5): 1001-14, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385964

RESUMEN

Checkpoints that limit stem cell self-renewal in response to DNA damage can contribute to cancer protection but may also promote tissue aging. Molecular components that control stem cell responses to DNA damage remain to be delineated. Using in vivo RNAi screens, we identified basic leucine zipper transcription factor, ATF-like (BATF) as a major component limiting self-renewal of hematopoietic stem cells (HSCs) in response to telomere dysfunction and γ-irradiation. DNA damage induces BATF in a G-CSF/STAT3-dependent manner resulting in lymphoid differentiation of HSCs. BATF deletion improves HSC self-renewal and function in response to γ-irradiation or telomere shortening but results in accumulation of DNA damage in HSCs. Analysis of bone marrow from patients with myelodysplastic syndrome supports the conclusion that DNA damage-dependent induction of BATF is conserved in human HSCs. Together, these results provide experimental evidence that a BATF-dependent differentiation checkpoint limits self-renewal of HSCs in response to DNA damage.


Asunto(s)
Puntos de Control del Ciclo Celular , Diferenciación Celular , Senescencia Celular , Daño del ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Acortamiento del Telómero
4.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401844

RESUMEN

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Asunto(s)
Factor H de Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusión , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/química , Factor H de Complemento/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Activación de Complemento/efectos de los fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólisis/efectos de los fármacos , Vía Alternativa del Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Eritrocitos/metabolismo
5.
Eur J Immunol ; : e2350817, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101294

RESUMEN

We describe initial, current, and future aspects of complement activation and inhibition in the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH). PNH is a rare but severe hematological disorder characterized by complement-mediated intravascular hemolysis resulting in anemia and severe thrombosis. Insights into the complement-mediated pathophysiology ultimately led to regulatory approval of the first-in-class complement inhibitor, eculizumab, in 2007. This anti-complement C5 therapy resulted in the stabilization of many hematologic parameters and dramatically reduced the often fatal, coagulant-resistant thrombotic events. Despite the remarkable clinical success, a substantial proportion of PNH patients experience suboptimal clinical responses during anti-C5 therapy. We describe the identification and mechanistic dissection of four unexpected processes responsible for such suboptimal clinical responses: (1) pharmacokinetic and (2) pharmacodynamic intravascular breakthrough hemolysis, (3) continuing low-level residual intravascular hemolysis, and (4) extravascular hemolysis. Novel complement therapeutics mainly targeting different complement proteins proximal in the cascade attempt to address these remaining problems. With five approved complement inhibitors in the clinic and many more being evaluated in clinical trials, PNH remains one of the complement diseases with the highest intensity of clinical research. Mechanistically unexpected breakthrough events occur not only with C5 inhibitors but also with proximal pathway inhibitors, which require further mechanistic elaboration.

6.
Blood ; 139(13): 1954-1972, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34415298

RESUMEN

In 2007 and 2009, the regulatory approval of the first-in-class complement inhibitor eculizumab revolutionized the clinical management of 2 rare, life-threatening clinical conditions: paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). Although being completely distinct diseases affecting blood cells and the glomerulus, PNH and aHUS remarkably share several features in their etiology and clinical presentation. An imbalance between complement activation and regulation at host surfaces underlies both diseases precipitating in severe thrombotic events that are largely resistant to anticoagulant and/or antiplatelet therapies. Inhibition of the common terminal complement pathway by eculizumab prevents the frequently occurring thrombotic events responsible for the high mortality and morbidity observed in patients not treated with anticomplement therapy. Although many in vitro and ex vivo studies elaborate numerous different molecular interactions between complement activation products and hemostasis, this review focuses on the clinical evidence that links these 2 fields in humans. Several noninfectious conditions with known complement involvement are scrutinized for common patterns concerning a prothrombotic statues and the occurrence of certain complement activation levels. Next to PNH and aHUS, germline-encoded CD59 or CD55 deficiency (the latter causing the disease complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy), autoimmune hemolytic anemia, (catastrophic) antiphospholipid syndrome, and C3 glomerulopathy are considered. Parallels and distinct features among these conditions are discussed against the background of thrombosis, complement activation, and potential complement diagnostic and therapeutic avenues.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Hemoglobinuria Paroxística , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Antígenos CD55/uso terapéutico , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Humanos
7.
Ann Hematol ; 103(1): 5-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37804344

RESUMEN

Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by uncontrolled terminal complement activation leading to intravascular hemolysis (IVH), thrombosis, and impairments in quality of life (QoL). The aim of this study was to identify the clinical drivers of improvement in patient-reported outcomes (PROs) in patients with PNH receiving the complement component 5 (C5) inhibitors eculizumab and ravulizumab.This post hoc analysis assessed clinical outcomes and PROs from 246 complement inhibitor-naive patients with PNH enrolled in a phase 3 randomized non-inferiority study that compared the C5 inhibitors ravulizumab and eculizumab (study 301; NCT02946463). The variables of interest were lactate dehydrogenase (LDH) levels, a surrogate measure of IVH, and hemoglobin (Hb) levels. PROs were collected using Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) and European Organisation for Research and Treatment of Cancer, Quality of Life Questionnaire-Core 30 (EORTC QLQ-C30) to assess fatigue and QoL, respectively.Improvements in absolute mean LDH levels were significantly associated with improvements in mean FACIT-F score (p = 0.0024) and EORTC QLQ-C30 global health (GH) score (p < 0.0001) from baseline to day 183. Improvements in scores were achieved despite a non-significant increase in Hb levels. To understand the interaction between LDH and Hb, a regression analysis was performed: LDH response with Hb improvements was a significant predictor of improvement in fatigue. The independent effect of improved Hb did not significantly affect FACIT-F or EORTC QLQ-C30 GH scores.These findings suggest that LDH levels are an important determinant of fatigue and QoL outcomes in patients with PNH. CTR: NCT02946463, October 27, 2016.


Asunto(s)
Hemoglobinuria Paroxística , Calidad de Vida , Humanos , Inactivadores del Complemento/uso terapéutico , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemólisis , Fatiga
8.
J Immunol ; 208(5): 1248-1258, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35173033

RESUMEN

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.


Asunto(s)
Antígeno B7-H1/metabolismo , Activación de Complemento/inmunología , Complemento C3/antagonistas & inhibidores , Complemento C5/antagonistas & inhibidores , Hemoglobinuria Paroxística/patología , Antígeno B7-H1/sangre , Antígenos CD55/genética , Antígenos CD59/genética , Complemento C3/inmunología , Complemento C5/inmunología , Granulocitos/metabolismo , Células Madre Hematopoyéticas/citología , Hemoglobinuria Paroxística/inmunología , Humanos , Evasión Inmune/inmunología , Proteínas de la Membrana/genética , Monocitos/metabolismo
10.
Eur J Immunol ; 52(1): 138-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676541

RESUMEN

The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN-α and IFN-γ stimulation of PBMCs from patients with severe COVID-19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon-pathway targeted treatments.


Asunto(s)
COVID-19/inmunología , Monocitos/inmunología , SARS-CoV-2/inmunología , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología , Adulto , Anciano , Femenino , Humanos , Factores Reguladores del Interferón/inmunología , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Fosforilación/inmunología
11.
J Transl Med ; 21(1): 837, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990219

RESUMEN

BACKGROUND: Patients with steroid-refractory acute graft-versus-host disease (aGvHD) not tolerating/responding to ruxolitinib (RR-aGvHD) have a dismal prognosis. METHODS: We retrospectively assessed real-world outcomes of RR-aGvHD treated with the random-donor allogeneic MSC preparation MSC-FFM, available via Hospital Exemption in Germany. MSC-FFM is provided as frozen cell dispersion for administration as i.v. infusion immediately after thawing, at a recommended dose of 1-2 million MSCs/kg body weight in 4 once-weekly doses. 156 patients, 33 thereof children, received MSC-FFM; 5% had Grade II, 40% had Grade III, and 54% had Grade IV aGvHD. Median (range) number of prior therapies was 4 (1-10) in adults and 7 (2-11) in children. RESULTS: The safety profile of MSC-FFM was consistent with previous reports for MSC therapies in general and MSC-FFM specifically. The overall response rate at Day 28 was 46% (95% confidence interval [CI] 36-55%) in adults and 64% (45-80%) in children; most responses were durable. Probability of overall survival at 6, 12 and 24 months was 47% (38-56%), 35% (27-44%) and 30% (22-39%) for adults, and 59% (40-74%), 42% (24-58%) and 35% (19-53%) for children, respectively (whole cohort: median OS 5.8 months). CONCLUSION: A recent real-world analysis of outcomes for 64 adult RR-aGvHD patients not treated with MSCs reports survival of 20%, 16% and 10% beyond 6, 12 and 24 months, respectively (median 28 days). Our data thus suggest effectiveness of MSC-FFM in RR-aGvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Niño , Adulto , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Estudios Retrospectivos , Enfermedad Aguda , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/tratamiento farmacológico
12.
Blood ; 137(4): 443-455, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507296

RESUMEN

Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a "C3 bypass" activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data.


Asunto(s)
C3 Convertasa de la Vía Alternativa del Complemento/fisiología , Complemento C3/antagonistas & inhibidores , Complemento C4b/fisiología , Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/farmacología , Vía Clásica del Complemento/efectos de los fármacos , Modelos Inmunológicos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Membrana Celular/inmunología , Complemento C5/química , Inactivadores del Complemento/uso terapéutico , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Resistencia a Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Conformación Proteica
13.
Vox Sang ; 118(8): 666-673, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37401414

RESUMEN

BACKGROUND AND OBJECTIVES: There is a need for conversion of SARS-CoV-2 serology data from different laboratories to a harmonized international unit. We aimed to compare the performance of multiple SARS-CoV-2 antibody serology assays among 25 laboratories across 12 European countries. MATERIALS AND METHODS: To investigate this we have distributed to all participating laboratories a panel of 15 SARS-CoV-2 plasma samples and a single batch of pooled plasma calibrated to the WHO IS 20/136 standard. RESULTS: All assays showed excellent discrimination between SARS-CoV-2 seronegative plasma samples and pre-vaccinated seropositive plasma samples but differed substantially in raw antibody titres. Titres could be harmonized to binding antibody units per millilitre by calibration in relation to a reference reagent. CONCLUSION: The standardization of antibody quantification is of paramount importance to allow interpretation and comparison of serology data reported in clinical trials in order to identify donor cohorts from whom the most effective convalescent plasma can be collected.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Laboratorios , Sueroterapia para COVID-19 , Europa (Continente) , Anticuerpos Antivirales , Prueba de COVID-19
14.
Eur J Haematol ; 111(2): 300-310, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37321625

RESUMEN

OBJECTIVES: This study reports long-term outcomes from the open-label extension (OLE) period of the Phase I/II COMPOSER trial (NCT03157635) that evaluated crovalimab in patients with paroxysmal nocturnal haemoglobinuria, who were treatment-naive or switched from eculizumab at enrolment. METHODS: COMPOSER consists of four sequential parts followed by the OLE. The primary OLE objective was to assess long-term crovalimab safety, with a secondary objective to assess crovalimab pharmacokinetics and pharmacodynamics. Exploratory efficacy endpoints included change in lactate dehydrogenase (LDH), transfusion avoidance, haemoglobin stabilisation and breakthrough haemolysis (BTH). RESULTS: A total 43 of 44 patients entered the OLE after completing the primary treatment period. Overall, 14 of 44 (32%) experienced treatment-related adverse events. Steady state exposure levels of crovalimab and terminal complement inhibition were maintained over the OLE. During the OLE, mean normalised LDH was generally maintained at ≤1.5× upper limit of normal, transfusion avoidance was achieved in 83%-92% of patients and haemoglobin stabilisation was reached in 79%-88% of patients across each 24-week interval. Five BTH events occurred with none leading to withdrawal. CONCLUSIONS: Over a 3-year median treatment duration, crovalimab was well tolerated and sustained C5 inhibition was achieved. Intravascular haemolysis control, haemoglobin stabilisation and transfusion avoidance were maintained, signifying long-term crovalimab efficacy.


Asunto(s)
Hemoglobinuria Paroxística , Humanos , Hemoglobinuria Paroxística/diagnóstico , Hemoglobinuria Paroxística/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Transfusión Sanguínea , Hemoglobinas , Duración de la Terapia , Hemólisis , L-Lactato Deshidrogenasa
15.
Clin Chem Lab Med ; 61(12): 2248-2255, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37401452

RESUMEN

OBJECTIVES: Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. METHODS: sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. RESULTS: Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. CONCLUSIONS: sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.


Asunto(s)
Varicela , Dengue , Gripe Humana , Sarampión , Sepsis , Humanos , Antígeno B7-H1/metabolismo , Donantes de Sangre , ARN Viral , Riñón/fisiología , Pronóstico
16.
J Immunol ; 206(11): 2614-2622, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33980583

RESUMEN

The current SARS-CoV-2 pandemic has triggered the development of various SARS-CoV-2 neutralization tests. A wild-type virus (using African green monkey VeroE6 cells), a pseudovirus (using human Caco-2 cells), and a surrogate neutralization test platform were applied to characterize the SARS-CoV-2 neutralization potential of a cohort of 111 convalescent plasma donors over a period of seven months after diagnosis. This allowed an in-depth validation and assay performance analysis of these platforms. More importantly, we found that SARS-CoV-2 neutralization titers were stable or even increased within the observation period, which contradicts earlier studies reporting a rapid waning of Ab titers after three to four months. Moreover, we observed a positive correlation of neutralization titers with increasing age, number of symptoms reported, and the presence of the Rhesus Ag RhD. Validation of the platforms revealed that highest assay performances were obtained with the wild-type virus and the surrogate neutralization platforms. However, our data also suggested that selection of cutoff titers had a strong impact on the evaluation of neutralization potency. When taking strong neutralization potency, as demonstrated by the wild-type virus platform as the gold standard, up to 55% of plasma products had low neutralization titers. However, a significant portion of these products were overrated in their potency when using the surrogate assay with the recommended cutoff titer. In summary, our study demonstrates that SARS-CoV-2 neutralization titers are stable for at least seven months after diagnosis and offers a testing strategy for rapid selection of high-titer convalescent plasma products in a biosafety level 1 environment.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Donantes de Sangre , COVID-19/terapia , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , Femenino , Humanos , Inmunización Pasiva , Masculino , Sistema del Grupo Sanguíneo Rh-Hr/inmunología , Sueroterapia para COVID-19
17.
Acta Haematol ; 146(1): 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36108594

RESUMEN

INTRODUCTION: Complement C5 inhibitor eculizumab is the first approved treatment for paroxysmal nocturnal hemoglobinuria (PNH), a rare hematologic disorder caused by uncontrolled terminal complement activation. Approximately 50% of patients with aplastic anemia (AA) have PNH cells. Limited data are available for patients with AA-PNH taking concomitant immunosuppressive therapy (IST) and eculizumab. METHODS: Data from the International PNH Registry (NCT01374360) were used to evaluate the safety and effectiveness of eculizumab and IST in patients taking IST followed by concomitant eculizumab (IST + c-Ecu) or eculizumab followed by concomitant IST (Ecu + c-IST). RESULTS: As of January 1, 2018, 181 Registry-enrolled patients were included in the eculizumab effectiveness analyses (n = 138, IST + c-Ecu; n = 43, Ecu + c-IST); 87 additional patients received IST alone. Reductions from baseline with eculizumab were observed in the least squares mean lactate dehydrogenase ratio (IST + c-Ecu, -3.4; Ecu + c-IST, -3.5); thrombotic event incidence rates were similar between groups (IST + c-Ecu, 1.3; Ecu + c-IST, 0.7). Red blood cell transfusion rate ratios decreased from baseline for IST + c-Ecu (0.7) and increased for Ecu + c-IST (1.2); there were none for IST alone. Hematological parameters generally improved for IST + c-Ecu and IST alone, and changed minimally or worsened for Ecu + c-IST. Safety signals were generally consistent with those previously described for the respective therapies. DISCUSSION/CONCLUSION: Although some intergroup differences were seen, concomitant eculizumab and IST were safe and effective regardless of treatment sequence.


Asunto(s)
Anemia Aplásica , Hemoglobinuria Paroxística , Humanos , Anemia Aplásica/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados , Hemoglobinuria Paroxística/complicaciones , Hemoglobinuria Paroxística/tratamiento farmacológico , Terapia de Inmunosupresión , Sistema de Registros
18.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298237

RESUMEN

Immune checkpoint inhibitors can block inhibitory molecules on the surface of T cells, switching them from an exhausted to an active state. One of these inhibitory immune checkpoints, programmed cell death protein 1 (PD-1) is expressed on T cell subpopulations in acute myeloid leukemia (AML). PD-1 expression has been shown to increase with AML progression following allo-haematopoeitic stem cell transplantation, and therapy with hypomethylating agents. We have previously shown that anti-PD-1 can enhance the response of leukemia-associated antigen (LAA)-specific T cells against AML cells as well as leukemic stem and leukemic progenitor cells (LSC/LPCs) ex vivo. In concurrence, blocking of PD-1 with antibodies such as nivolumab has been shown to enhance response rates post-chemotherapy and stem cell transplant. The immune modulating drug lenalidomide has been shown to promote anti-tumour immunity including anti-inflammatory, anti-proliferative, pro-apoptotic and anti-angiogenicity. The effects of lenalidomide are distinct from chemotherapy, hypomethylating agents or kinase inhibitors, making lenalidomide an attractive agent for use in AML and in combination with existing active agents. To determine whether anti-PD-1 (nivolumab) and lenalidomide alone or in combination could enhance LAA-specific T cell immune responses, we used colony-forming immune and ELISpot assays. Combinations of immunotherapeutic approaches are believed to increase antigen-specific immune responses against leukemic cells including LPC/LSCs. In this study we used a combination of LAA-peptides with the immune checkpoint inhibitor anti-PD-1 and lenalidomide to enhance the killing of LSC/LPCs ex vivo. Our data offer a novel insight into how we could improve AML patient responses to treatment in future clinical studies.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T , Humanos , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Nivolumab/farmacología , Nivolumab/uso terapéutico , Leucemia Mieloide Aguda/patología , Inmunoterapia , Inmunidad
19.
Br J Haematol ; 198(5): 866-874, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35799423

RESUMEN

Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Leucemia Mieloide Aguda , Nucleofosmina , Linfocitos T Citotóxicos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Nivolumab/farmacología , Nucleofosmina/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
20.
Blood ; 135(12): 912-920, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31978221

RESUMEN

Complement C5 inhibition is the standard of care (SoC) for patients with paroxysmal nocturnal hemoglobinuria (PNH) with significant clinical symptoms. Constant and complete suppression of the terminal complement pathway and the high serum concentration of C5 pose challenges to drug development that result in IV-only treatment options. Crovalimab, a sequential monoclonal antibody recycling technology antibody was engineered for extended self-administered subcutaneous dosing of small volumes in diseases amenable for C5 inhibition. A 3-part open-label adaptive phase 1/2 trial was conducted to assess safety, pharmacokinetics, pharmacodynamics, and exploratory efficacy in healthy volunteers (part 1), as well as in complement blockade-naive (part 2) and C5 inhibitor-treated (part 3) PNH patients. Twenty-nine patients were included in part 2 (n = 10) and part 3 (n = 19). Crovalimab concentrations exceeded the prespecified 100-µg/mL level and resulted in complete and sustained terminal complement pathway inhibition in treatment-naive and C5 inhibitor-pretreated PNH patients. Hemolytic activity and free C5 levels were suppressed below clinically relevant thresholds (liposome assay <10 U/mL and <50 ng/mL, respectively). Safety was consistent with the known profile of C5 inhibition. As expected, formation of drug-target-drug complexes was observed in all 19 patients switching to crovalimab, manifesting as transient mild or moderate vasculitic skin reactions in 2 of 19 participants. Both events resolved under continued treatment with crovalimab. Subcutaneous crovalimab (680 mg; 4 mL), administered once every 4 weeks, provides complete and sustained terminal complement pathway inhibition in patients with PNH, warranting further clinical development (ClinicalTrials.gov identifier, NCT03157635).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/uso terapéutico , Hemoglobinuria Paroxística/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Monoclonales/farmacología , Biomarcadores , Complemento C5/inmunología , Inactivadores del Complemento/farmacología , Monitoreo de Drogas , Femenino , Hemoglobinuria Paroxística/sangre , Hemoglobinuria Paroxística/inmunología , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA