Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 809
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Genet ; 55: 633-659, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34555285

RESUMEN

Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.


Asunto(s)
Genómica , Museos , Biodiversidad , Evolución Biológica , Reproducibilidad de los Resultados
2.
Proc Natl Acad Sci U S A ; 121(18): e2320590121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621118

RESUMEN

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.


Asunto(s)
Mamíferos , Marsupiales , Animales , Ratones , Australia , Dinámica Poblacional , Genotipo , Heterocigoto , Variación Genética , Genética de Población
3.
Proc Natl Acad Sci U S A ; 121(8): e2319696121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346181

RESUMEN

The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.


Asunto(s)
Fósiles , Magnoliopsida , Embarazo , Femenino , Animales , Magnoliopsida/genética , Placenta , Filogenia , Aves/genética , Mamíferos/genética , ADN Mitocondrial/genética , Evolución Biológica
5.
PLoS Genet ; 19(1): e1010551, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656838

RESUMEN

Human activities have precipitated a rise in the levels of introgressive gene flow among animals. The investigation of conspecific populations at different time points may shed light on the magnitude of human-mediated introgression. We used the red junglefowl Gallus gallus, the wild ancestral form of the chicken, as our study system. As wild junglefowl and domestic chickens readily admix, conservationists fear that domestic introgression into junglefowl may compromise their wild genotype. By contrasting the whole genomes of 51 chickens with 63 junglefowl from across their natural range, we found evidence of a loss of the wild genotype across the Anthropocene. When comparing against the genomes of junglefowl from approximately a century ago using rigorous ancient-DNA protocols, we discovered that levels of domestic introgression are not equal among and within modern wild populations, with the percentage of domestic ancestry around 20-50%. We identified a number of domestication markers in which chickens are deeply differentiated from historic junglefowl regardless of breed and/or geographic provenance, with eight genes under selection. The latter are involved in pathways dealing with development, reproduction and vision. The wild genotype is an allelic reservoir that holds most of the genetic diversity of G. gallus, a species which is immensely important to human society. Our study provides fundamental genomic infrastructure to assist in efforts to prevent a further loss of the wild genotype through introgression of domestic alleles.


Asunto(s)
Pollos , Genética de Población , Genoma , Animales , Pollos/genética , Flujo Génico , Genoma/genética , Genotipo , Filogenia
6.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844245

RESUMEN

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Asunto(s)
Quirópteros , Ecolocación , Animales , Quirópteros/fisiología , Filogenia , Evolución Molecular , Mamíferos/genética , Audición/genética , Ballenas/fisiología , Aves/genética , Ecolocación/fisiología
7.
Dev Biol ; 514: 66-77, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851558

RESUMEN

The ways in which animals sense the world changes throughout development. For example, young of many species have limited visual capabilities, but still make social decisions, likely based on information gathered through other sensory modalities. Poison frog tadpoles display complex social behaviors that have been suggested to rely on vision despite a century of research indicating tadpoles have poorly-developed visual systems relative to adults. Alternatively, other sensory modalities, such as the lateral line system, are functional at hatching in frogs and may guide social decisions while other sensory systems mature. Here, we examined development of the mechanosensory lateral line and visual systems in tadpoles of the mimic poison frog (Ranitomeya imitator) that use vibrational begging displays to stimulate egg feeding from their mothers. We found that tadpoles hatch with a fully developed lateral line system. While begging behavior increases with development, ablating the lateral line system inhibited begging in pre-metamorphic tadpoles, but not in metamorphic tadpoles. We also found that the increase in begging and decrease in reliance on the lateral line co-occurs with increased retinal neural activity and gene expression associated with eye development. Using the neural tracer neurobiotin, we found that axonal innervations from the eye to the brain proliferate during metamorphosis, with few retinotectal connections in recently-hatched tadpoles. We then tested visual function in a phototaxis assay and found tadpoles prefer darker environments. The strength of this preference increased with developmental stage, but eyes were not required for this behavior, possibly indicating a role for the pineal gland. Together, these data suggest that tadpoles rely on different sensory modalities for social interactions across development and that the development of sensory systems in socially complex poison frog tadpoles is similar to that of other frog species.


Asunto(s)
Larva , Animales , Larva/fisiología , Metamorfosis Biológica/fisiología , Sistema de la Línea Lateral/fisiología , Comunicación Animal , Ranidae/fisiología , Visión Ocular/fisiología , Retina/fisiología
8.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415852

RESUMEN

Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.


Asunto(s)
Melanosis , Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/genética , Australia , Passeriformes/genética , Polimorfismo de Nucleótido Simple , Plumas , Pigmentación , Color
9.
Circ Res ; 132(10): 1259-1271, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167359

RESUMEN

The onset and widespread dissemination of the severe acute respiratory syndrome coronavirus-2 in late 2019 impacted the world in a way not seen since the 1918 H1N1 pandemic, colloquially known as the Spanish Flu. Much like the Spanish Flu, which was observed to disproportionately impact young adults, it became clear in the early days of the coronavirus disease 2019 (COVID-19) pandemic that certain groups appeared to be at higher risk for severe illness once infected. One such group that immediately came to the forefront and garnered international attention was patients with preexisting cardiovascular disease. Here, we examine the available literature describing the interaction of COVID-19 with a myriad of cardiovascular conditions and diseases, paying particular attention to patients diagnosed with arrythmias, heart failure, and coronary artery disease. We further discuss the association of acute COVID-19 with de novo cardiovascular disease, including myocardial infarction due to coronary thrombosis, myocarditis, and new onset arrhythmias. We will evaluate various biochemical theories to explain these findings, including possible mechanisms of direct myocardial injury caused by the severe acute respiratory syndrome coronavirus-2 virus at the cellular level. Finally, we will discuss the strategies employed by numerous groups and governing bodies within the cardiovascular disease community to address the unprecedented challenges posed to the care of our most vulnerable patients, including heart transplant recipients, end-stage heart failure patients, and patients suffering from acute coronary syndromes, during the early days and height of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Subtipo H1N1 del Virus de la Influenza A , Influenza Pandémica, 1918-1919 , Historia del Siglo XX , Humanos , COVID-19/complicaciones , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/diagnóstico , Pandemias , SARS-CoV-2 , Arritmias Cardíacas/complicaciones , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/complicaciones , Miocardio
10.
PLoS Comput Biol ; 20(4): e1011995, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656999

RESUMEN

Genomes contain conserved non-coding sequences that perform important biological functions, such as gene regulation. We present a phylogenetic method, PhyloAcc-C, that associates nucleotide substitution rates with changes in a continuous trait of interest. The method takes as input a multiple sequence alignment of conserved elements, continuous trait data observed in extant species, and a background phylogeny and substitution process. Gibbs sampling is used to assign rate categories (background, conserved, accelerated) to lineages and explore whether the assigned rate categories are associated with increases or decreases in the rate of trait evolution. We test our method using simulations and then illustrate its application using mammalian body size and lifespan data previously analyzed with respect to protein coding genes. Like other studies, we find processes such as tumor suppression, telomere maintenance, and p53 regulation to be related to changes in longevity and body size. In addition, we also find that skeletal genes, and developmental processes, such as sprouting angiogenesis, are relevant.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Filogenia , Animales , Longevidad/genética , Humanos , Biología Computacional/métodos , Simulación por Computador , Tamaño Corporal/genética , Nucleótidos/genética , Alineación de Secuencia/métodos
11.
Nat Rev Genet ; 20(10): 615-628, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31300751

RESUMEN

Billions of hectares of natural ecosystems have been degraded through human actions. The global community has agreed on targets to halt and reverse these declines, and the restoration sector faces the important but arduous task of implementing programmes to meet these objectives. Existing and emerging genomics tools offer the potential to improve the odds of achieving these targets. These tools include population genomics that can improve seed sourcing, meta-omics that can improve assessment and monitoring of restoration outcomes, and genome editing that can generate novel genotypes for restoring challenging environments. We identify barriers to adopting these tools in a restoration context and emphasize that regulatory and ethical frameworks are required to guide their use.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Genómica/métodos , Animales , Biodiversidad , Ecosistema , Humanos
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042801

RESUMEN

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Asunto(s)
Secuencia de Bases/genética , Eucariontes/genética , Genómica/ética , Animales , Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Genoma , Genómica/métodos , Humanos , Filogenia
13.
BMC Biol ; 22(1): 49, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413944

RESUMEN

BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.


Asunto(s)
Flujo Génico , Genómica , Pájaros Cantores , Filogenia , Genómica/métodos , Genoma
14.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665177

RESUMEN

An important goal of evolutionary genomics is to identify genomic regions whose substitution rates differ among lineages. For example, genomic regions experiencing accelerated molecular evolution in some lineages may provide insight into links between genotype and phenotype. Several comparative genomics methods have been developed to identify genomic accelerations between species, including a Bayesian method called PhyloAcc, which models shifts in substitution rate in multiple target lineages on a phylogeny. However, few methods consider the possibility of discordance between the trees of individual loci and the species tree due to incomplete lineage sorting, which might cause false positives. Here, we present PhyloAcc-GT, which extends PhyloAcc by modeling gene tree heterogeneity. Given a species tree, we adopt the multispecies coalescent model as the prior distribution of gene trees, use Markov chain Monte Carlo (MCMC) for inference, and design novel MCMC moves to sample gene trees efficiently. Through extensive simulations, we show that PhyloAcc-GT outperforms PhyloAcc and other methods in identifying target lineage-specific accelerations and detecting complex patterns of rate shifts, and is robust to specification of population size parameters. PhyloAcc-GT is usually more conservative than PhyloAcc in calling convergent rate shifts because it identifies more accelerations on ancestral than on terminal branches. We apply PhyloAcc-GT to two examples of convergent evolution: flightlessness in ratites and marine mammal adaptations, and show that PhyloAcc-GT is a robust tool to identify shifts in substitution rate associated with specific target lineages while accounting for incomplete lineage sorting.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Animales , Teorema de Bayes , Filogenia , Genómica , Mamíferos
15.
Mol Biol Evol ; 40(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37402641

RESUMEN

Throughout the Plio-Pleistocene, climate change has impacted tropical marine ecosystems substantially, with even more severe impacts predicted in the Anthropocene. Although many studies have clarified demographic histories of seabirds in polar regions, the history of keystone seabirds of the tropics is unclear, despite the prominence of albatrosses (Diomedeidae, Procellariiformes) as the largest and most threatened group of oceanic seabirds. To understand the impact of climate change on tropical albatrosses, we investigated the evolutionary and demographic histories of all four North Pacific albatrosses and their prey using whole-genome analyses. We report a striking concordance in demographic histories among the four species, with a notable dip in effective population size at the beginning of the Pleistocene and a population expansion in the Last Glacial Period when sea levels were low, which resulted in increased potential coastal breeding sites. Abundance of the black-footed albatross dropped again during the Last Glacial Maximum, potentially linked to climate-driven loss of breeding sites and concordant genome-derived decreases in its major prey. We find very low genome-wide (π < 0.001) and adaptative genetic diversities across the albatrosses, with genes of the major histocompatibility complex close to monomorphic. We also identify recent selective sweeps at genes associated with hyperosmotic adaptation, longevity, and cognition and memory. Our study has shed light on the evolutionary and demographic histories of the largest tropical oceanic seabirds and provides evidence for their large population fluctuations and alarmingly low genetic diversities.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Variación Genética , Aves
16.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36911907

RESUMEN

Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Masculino , Testosterona/metabolismo , Pigmentación/genética , Carotenoides/metabolismo , Pájaros Cantores/genética , Plumas , Expresión Génica
17.
Br J Cancer ; 130(12): 1936-1942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714747

RESUMEN

BACKGROUND: Gut microbiome modulation to boost antitumor immune responses is under investigation. METHODS: ROMA-2 evaluated the microbial ecosystem therapeutic (MET)-4 oral consortia, a mixture of cultured human stool-derived immune-responsiveness associated bacteria, given with chemoradiation (CRT) in HPV-related oropharyngeal cancer patients. Co-primary endpoints were safety and changes in stool cumulative MET-4 taxa relative abundance (RA) by 16SRNA sequencing. Stools and plasma were collected pre/post-MET-4 intervention for microbiome and metabolome analysis. RESULTS: Twenty-nine patients received ≥1 dose of MET-4 and were evaluable for safety: drug-related adverse events (AEs) occurred in 13/29 patients: all grade 1-2 except one grade 3 (diarrhea). MET-4 was discontinued early in 7/29 patients due to CRT-induced toxicity, and in 1/29 due to MET-4 AEs. Twenty patients were evaluable for ecological endpoints: there was no increase in stool MET-4 RA post-intervention but trended to increase in stage III patients (p = 0.06). MET-4 RA was higher in stage III vs I-II patients at week 4 (p = 0.03) and 2-month follow-up (p = 0.01), which correlated with changes in plasma and stool targeted metabolomics. CONCLUSIONS: ROMA-2 did not meet its primary ecologic endpoint, as no engraftment was observed in the overall cohort. Exploratory findings of engraftment in stage III patients warrants further investigation of microbiome interventions in this subgroup.


Asunto(s)
Quimioradioterapia , Microbioma Gastrointestinal , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/microbiología , Neoplasias Orofaríngeas/virología , Masculino , Femenino , Persona de Mediana Edad , Quimioradioterapia/métodos , Anciano , Infecciones por Papillomavirus/complicaciones , Estudios Prospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/microbiología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Adulto , Heces/microbiología
18.
Biochem Cell Biol ; 102(4): 291-298, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478957

RESUMEN

Cell-free DNA (cfDNA) from the bloodstream has been studied for cancer biomarker discovery, and chromatin-derived epigenetic features have come into the spotlight for their potential to expand clinical applications. Methylation, fragmentation, and nucleosome positioning patterns of cfDNA have previously been shown to reveal epigenomic and inferred transcriptomic information. More recently, histone modifications have emerged as a tool to further identify tumor-specific chromatin variants in plasma. A number of sequencing methods have been developed to analyze these epigenetic markers, offering new insights into tumor biology. Features within cfDNA allow for cancer detection, subtype and tissue of origin classification, and inference of gene expression. These methods provide a window into the complexity of cancer and the dynamic nature of its progression. In this review, we highlight the array of epigenetic features in cfDNA that can be extracted from chromatin- and nucleosome-associated organization and outline potential use cases in cancer management.


Asunto(s)
Biomarcadores de Tumor , Cromatina , Neoplasias , Nucleosomas , Humanos , Nucleosomas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biopsia Líquida/métodos , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patología , Cromatina/metabolismo , Cromatina/genética , Epigénesis Genética , Metilación de ADN , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética
19.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37402621

RESUMEN

SUMMARY: Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) has emerged as a promising liquid biopsy technology to detect cancers and monitor treatments. While several bioinformatics tools for DNA methylation analysis have been adapted for cfMeDIP-seq data, an end-to-end pipeline and quality control framework specifically for this data type is still lacking. Here, we present the MEDIPIPE, which provides a one-stop solution for cfMeDIP-seq data quality control, methylation quantification, and sample aggregation. The major advantages of MEDIPIPE are: (i) ease of implementation and reproducibility with Snakemake containerized execution environments that will be automatically deployed via Conda; (ii) flexibility to handle different experimental settings with a single configuration file; and (iii) computationally efficiency for large-scale cfMeDIP-seq profiling data analysis and aggregation. AVAILABILITY AND IMPLEMENTATION: This pipeline is an open-source software under the MIT license and it is freely available at https://github.com/pughlab/MEDIPIPE.


Asunto(s)
Ácidos Nucleicos Libres de Células , Programas Informáticos , Reproducibilidad de los Resultados , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Control de Calidad
20.
PLoS Pathog ; 18(11): e1010524, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441790

RESUMEN

Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda. Whole KSHV genomes were sequenced from 20 tumors with the highest viral load, whereas only polymorphic genes were screened by PCR and sequenced from 47 other tumors. Nine individuals harbored ≥1 tumors with a median 6-fold over-coverage of a region centering on K5 and K6 genes. K8.1 gene was inactivated in 8 individuals, while 5 had mutations in the miR-K10 microRNA coding sequence. Recurring inter-host polymorphisms were detected in K4.2 and K11.2. The K5-K6 region rearrangement breakpoints and K8.1 mutations were all unique, indicating that they arise frequently de novo. Rearrangement breakpoints were associated with potential G-quadruplex and Z-DNA forming sequences. Exploratory evaluations of viral mutations with clinical and tumor traits were conducted by logistic regression without multiple test corrections. K5-K6 over-coverage and K8.1 inactivation were tentatively correlated (p<0.001 and p = 0.005, respectively) with nodular rather than macular tumors, and with individuals that had lesions in ≤4 anatomic areas (both p≤0.01). Additionally, a trend was noted for miR-K10 point mutations and lower survival rates (HR = 4.11, p = 0.053). Two instances were found of distinct tumors within an individual sharing the same viral mutation, suggesting metastases or transmission of the aberrant viruses within the host. To summarize, KSHV genomes in tumors frequently have over-representation of the K5-K6 region, as well as K8.1 and miR-K10 mutations, and each might be associated with clinical phenotypes. Studying their possible effects may be useful for understanding KS tumorigenesis and disease progression.


Asunto(s)
Herpesvirus Humano 8 , Neoplasias , Humanos , Herpesvirus Humano 8/genética , Uganda , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA