Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Immunity ; 40(1): 66-77, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412613

RESUMEN

Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.


Asunto(s)
Colitis/inmunología , Hipoxia/inmunología , Membrana Mucosa/metabolismo , Neutrófilos/patología , Animales , Comunicación Celular , Movimiento Celular , Células Cultivadas , Microambiente Celular , Colitis/inducido químicamente , Colon/patología , Modelos Animales de Enfermedad , Hipoxia/inducido químicamente , Factor 1 Inducible por Hipoxia/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Membrana Mucosa/patología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Estrés Oxidativo , Oxígeno/metabolismo , Estabilidad Proteica/efectos de los fármacos , Migración Transendotelial y Transepitelial
2.
FASEB J ; 28(1): 256-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24029533

RESUMEN

Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Ciclo Celular/genética , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Línea Celular , Humanos , Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mutagénesis Sitio-Dirigida
3.
NPJ Vaccines ; 9(1): 40, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383578

RESUMEN

AKS-452, a subunit vaccine comprising an Fc fusion of the ancestral wild-type (WT) SARS-CoV-2 virus spike protein receptor binding domain (SP/RBD), was evaluated without adjuvant in a single cohort, non-randomized, open-labelled phase II study (NCT05124483) at a single site in The Netherlands for safety and immunogenicity. A single 90 µg subcutaneous booster dose of AKS-452 was administered to 71 adults previously primed with a registered mRNA- or adenovirus-based vaccine and evaluated for 273 days. All AEs were mild and no SAEs were attributable to AKS-452. While all subjects showed pre-existing SP/RBD binding and ACE2-inhibitory IgG titers, 60-68% responded to AKS-452 via ≥2-fold increase from days 28 to 90 and progressively decreased back to baseline by day 180 (days 28 and 90 mean fold-increases, 14.7 ± 6.3 and 8.0 ± 2.2). Similar response kinetics against RBD mutant proteins (including omicrons) were observed but with slightly reduced titers relative to WT. There was an expected strong inverse correlation between day-0 titers and the fold-increase in titers at day 28. AKS-452 enhanced neutralization potency against live virus, consistent with IgG titers. Nucleocapsid protein (Np) titers suggested infection occurred in 66% (46 of 70) of subjects, in which only 20 reported mild symptomatic COVID-19. These favorable safety and immunogenicity profiles support booster evaluation in a planned phase III universal booster study of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain.

4.
J Immunol ; 186(3): 1790-8, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21199896

RESUMEN

Numerous studies have revealed that hypoxia and inflammation occur coincidentally in mucosal disorders, such as inflammatory bowel disease. During inflammation, epithelial-expressed hypoxia-inducible factor (HIF) serves an endogenously protective function. In this study, we sought to explore how mucosal immune responses influence HIF-dependent end points. Guided by a screen of relevant inflammatory mediators, we identified IFN-γ as a potent repressor of HIF-dependent transcription in human intestinal epithelial cells. Analysis of HIF levels revealed that HIF-1ß, but not HIF-1α, is selectively repressed by IFN-γ in a JAK-dependent manner. Cloning and functional analysis of the HIF-1ß promoter identified a prominent region for IFN-γ-dependent repression. Further studies revealed that colonic IFN-γ and HIF-1ß levels were inversely correlated in a murine colitis model. Taken together, these studies demonstrated that intestinal epithelial HIF is attenuated by IFN-γ through transcriptional repression of HIF-1ß. These observations are relevant to the pathophysiology of colitis (i.e., that loss of HIF signaling during active inflammation may exacerbate disease pathogenesis).


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/antagonistas & inhibidores , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Colitis/inmunología , Interferón gamma/fisiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Proteínas Represoras/fisiología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Células CACO-2 , Línea Celular Tumoral , Células Cultivadas , Clonación Molecular , Colitis/enzimología , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/fisiología , Mucosa Intestinal/enzimología , Ratones , Ratones Endogámicos C57BL , Procolágeno-Prolina Dioxigenasa/fisiología , Transducción de Señal/inmunología
5.
J Immunol ; 186(11): 6505-14, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21515785

RESUMEN

Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.


Asunto(s)
Colitis/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Metabolómica/métodos , Adenina/análogos & derivados , Adenina/farmacología , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Animales , Western Blotting , Butiratos/farmacología , Línea Celular Tumoral , Colitis/genética , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Metilación de ADN/efectos de los fármacos , Sulfato de Dextran/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Células HeLa , Humanos , Inflamación/genética , Interferón gamma/metabolismo , Interferón gamma/farmacología , Mucosa Intestinal/patología , Espectroscopía de Resonancia Magnética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mucositis/genética , Mucositis/metabolismo , FN-kappa B/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Proc Natl Acad Sci U S A ; 107(32): 14298-303, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660763

RESUMEN

Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-kappaB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution.


Asunto(s)
Fosfatasa Alcalina/genética , Ácido Eicosapentaenoico/análogos & derivados , Inflamación/prevención & control , Mucosa Intestinal/enzimología , Lipopolisacáridos/antagonistas & inhibidores , Animales , Colitis/prevención & control , Ácido Eicosapentaenoico/farmacología , Células Epiteliales/química , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/análisis , Activación Transcripcional
7.
Vaccine ; 41(13): 2184-2197, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36842886

RESUMEN

BACKGROUND: Previous interim data from a phase I study of AKS-452, a subunit vaccine comprising an Fc fusion of the respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (SP/RBD) emulsified in the water-in-oil adjuvant, Montanide™ ISA 720, suggested a good safety and immunogenicity profile in healthy adults. This phase I study was completed and two dosing regimens were further evaluated in this phase II study. METHODS: This phase II randomized, open-labelled, parallel group study was conducted at a single site in The Netherlands with 52 healthy adults (18 - 72 years) receiving AKS-452 subcutaneously at one 90 µg dose (cohort 1, 26 subjects) or two 45 µg doses 28 days apart (cohort 2, 26 subjects). Serum samples were collected at the first dose (day 0) and at days 28, 56, 90, and 180. Safety and immunogenicity endpoints were assessed, along with induction of IgG isotypes, cross-reactive immunity against viral variants, and IFN-γ T cell responses. RESULTS: All AEs were mild/moderate (grades 1 or 2), and no SAEs were attributable to AKS-452. Seroconversion rates reached 100% in both cohorts, although cohort 2 showed greater geometric mean IgG titers that were stable through day 180 and associated with enhanced potencies of SP/RBD-ACE2 binding inhibition and live virus neutralization. AKS-452-induced IgG titers strongly bound mutant SP/RBD from several SARS-CoV-2 variants (including Omicrons) that were predominantly of the favorable IgG1/3 isotype and IFN-γ-producing T cell phenotype. CONCLUSION: These favorable safety and immunogenicity profiles of the candidate vaccine as demonstrated in this phase II study are consistent with those of the phase I study (ClinicalTrials.gov: NCT04681092) and suggest that a total of 90 µg received in 2 doses may offer a greater duration of cross-reactive neutralizing titers than when given in a single dose.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Vacunas contra la COVID-19/efectos adversos , Adyuvantes Inmunológicos/efectos adversos , Inmunoglobulina G , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes , Método Doble Ciego
8.
Vaccine ; 40(9): 1253-1260, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35115195

RESUMEN

To address the coronavirus disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recombinant subunit vaccine, AKS-452, is being developed comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain (SP/RBD) antigen and human IgG1 Fc emulsified in the water-in-oil adjuvant, Montanide™ ISA 720. A single-center, open-label, phase I dose-finding and safety study was conducted with 60 healthy adults (18-65 years) receiving one or two doses 28 days apart of 22.5 µg, 45 µg, or 90 µg of AKS-452 (i.e., six cohorts, N = 10 subjects per cohort). Primary endpoints were safety and reactogenicity and secondary endpoints were immunogenicity assessments. No AEs ≥ 3, no SAEs attributable to AKS-452, and no SARS-CoV-2 viral infections occurred during the study. Seroconversion rates of anti-SARS-CoV-2 SP/RBD IgG titers in the 22.5, 45, and 90 µg cohorts at day 28 were 70%, 90%, and 100%, respectively, which all increased to 100% at day 56 (except 89% for the single-dose 22.5 µg cohort). All IgG titers were Th1-isotype skewed and efficiently bound mutant SP/RBD from several SARS-CoV-2 variants with strong neutralization potencies of live virus infection of cells (including alpha and delta variants). The favorable safety and immunogenicity profiles of this phase I study (ClinicalTrials.gov: NCT04681092) support phase II initiation of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase II como Asunto , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Persona de Mediana Edad , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Adulto Joven
9.
J Clin Invest ; 118(11): 3682-92, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18924612

RESUMEN

Mucosal diseases are often characterized by an inflammatory infiltrate that includes polymorphonuclear leukocytes (PMNs), monocytes, lymphocytes, and platelets. A number of studies have suggested that the interaction of platelets with leukocytes has an essential proinflammatory role. Here, we examined whether platelets migrate across mucosal epithelium, as PMNs are known to do, and whether platelets influence epithelial cell function. Initial studies revealed that human platelets did not efficiently transmigrate across human epithelial cell monolayers. However, in the presence of human PMNs, platelet movement across the epithelium was proportional to the extent of PMN transmigration, and strategies that blocked PMN transmigration diminished platelet movement. Furthermore, platelet-PMN comigration was observed in intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The translocated platelets were found to release large quantities of ATP, which was metabolized to adenosine via a 2-step enzymatic reaction mediated by ecto-nucleotidases, including CD73 and ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), expressed on the apical membrane of the intestinal epithelial cells. In vitro studies and a mouse model of intestinal inflammation were employed to define a mechanism involving adenosine-mediated induction of electrogenic chloride secretion, with concomitant water movement into the intestinal lumen. These studies demonstrate that ecto-NTPDases are expressed on the apical membrane of epithelial cells and are involved in what we believe to be a previously unappreciated function for platelets in the inflamed intestine, which might promote bacterial clearance under inflammatory conditions.


Asunto(s)
5'-Nucleotidasa/metabolismo , Plaquetas/inmunología , Células Epiteliales/inmunología , Homeostasis/inmunología , Neutrófilos/fisiología , Animales , Plaquetas/metabolismo , Células Epiteliales/metabolismo , Humanos , Ratones , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo
10.
Gastroenterology ; 139(1): 259-69.e3, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20347817

RESUMEN

BACKGROUND & AIMS: Clostridium difficile is the leading cause of nosocomial infectious diarrhea. Antibiotic resistance and increased virulence of strains have increased the number of C difficile-related deaths worldwide. The innate host response mechanisms to C difficile are not resolved; we propose that hypoxia-inducible factor (HIF-1) has an innate, protective role in C difficile colitis. We studied the impact of C difficile toxins on the regulation of HIF-1 and evaluated the role of HIF-1alpha in C difficile-mediated injury/inflammation. METHODS: We assessed HIF-1alpha mRNA and protein levels and DNA binding in human mucosal biopsy samples and Caco-2 cells following exposure to C difficile toxins. We used the mouse ileal loop model of C difficile toxin-induced intestinal injury. Mice with targeted deletion of HIF-1alpha in the intestinal epithelium were used to assess the effects of HIF-1alpha signaling in response to C difficile toxin. RESULTS: Mucosal biopsy specimens and Caco-2 cells exposed to C difficile toxin had a significant increase in HIF-1alpha transcription and protein levels. Toxin-induced DNA binding was also observed in Caco-2 cells. Toxin-induced HIF-1alpha accumulation was attenuated by nitric oxide synthase inhibitors. In vivo deletion of intestinal epithelial HIF-1alpha resulted in more severe, toxin-induced intestinal injury and inflammation. In contrast, stabilization of HIF-1alpha with dimethyloxallyl glycine attenuated toxin-induced injury and inflammation. This was associated with induction of HIF-1-regulated protective factors (such as vascular endothelial growth factor-alpha, CD73, and intestinal trefoil factor) and down-regulation of proinflammatory molecules such as tumor necrosis factor and Cxcl1. CONCLUSIONS: HIF-1alpha protects the intestinal mucosa from C difficile toxins. The innate protective actions of HIF-1alpha in response to C difficile toxins be developed as therapeutics for C difficile-associated disease.


Asunto(s)
Clostridioides difficile/patogenicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Mucosa Intestinal/patología , Transducción de Señal/fisiología , Animales , Células CACO-2 , ADN/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Óxido Nítrico/fisiología , ARN Mensajero/análisis
11.
J Immunol ; 182(8): 4957-64, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342675

RESUMEN

Inflammatory diseases influence tissue metabolism, significantly altering the profile of extracellular adenine nucleotides. A number of studies have suggested that adenosine (Ado) may function as an endogenously generated anti-inflammatory molecule. Given the central role of intestinal epithelial cells to the development of colitis, we hypothesized that specific Ado receptors would contribute to disease resolution in mucosal inflammation as modeled by dextran sodium sulfate (DSS) colitis. Initial profiling studies revealed that murine intestinal epithelial cells express predominantly the Ado A2B receptor (AA2BR) and to a lesser extent AA2AR. Guided by these results, we examined the contribution of AA2BR to colitis. Initial studies indicated that the severity of colitis was increased in Aa2br(-/-) mice relative to Aa2br(+/+) controls, as reflected by increased weight loss, colonic shortening, and disease activity indices. Likewise, enteral administration of the selective AA2BR inhibitor PSB1115 to Aa2br(+/+) mice resulted in a similar increase in severity of DSS colitis. Cytokine profiling of colonic tissue revealed specific deficiencies in IL-10 in Aa2br(-/-) mice relative to controls. Extensions of these findings in cultured human intestinal epithelial cells revealed that stable Ado analogs induce IL-10 mRNA and protein and that such increases can be blocked with PSB1115. Taken together, these studies indicate a central regulatory role for AA2BR-modulated IL-10 in the acute inflammatory phase of DSS colitis, thereby implicating AA2BR as an endogenously protective molecule expressed on intestinal epithelial cells.


Asunto(s)
Colitis/metabolismo , Receptor de Adenosina A2B/metabolismo , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Regulación de la Expresión Génica , Humanos , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor de Adenosina A2B/deficiencia , Receptor de Adenosina A2B/genética
12.
Vaccine ; 39(45): 6601-6613, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34642088

RESUMEN

AKS-452 is a biologically-engineered vaccine comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain antigen (Ag) and human IgG1 Fc (SP/RBD-Fc) in clinical development for the induction and augmentation of neutralizing IgG titers against SARS-CoV-2 viral infection to address the COVID-19 pandemic. The Fc moiety is designed to enhance immunogenicity by increasing uptake via Fc-receptors (FcγR) on Ag-presenting cells (APCs) and prolonging exposure due to neonatal Fc receptor (FcRn) recycling. AKS-452 induced approximately 20-fold greater neutralizing IgG titers in mice relative to those induced by SP/RBD without the Fc moiety and induced comparable long-term neutralizing titers with a single dose vs. two doses. To further enhance immunogenicity, AKS-452 was evaluated in formulations containing a panel of adjuvants in which the water-in-oil adjuvant, Montanide™ ISA 720, enhanced neutralizing IgG titers by approximately 7-fold after one and two doses in mice, including the neutralization of live SARS-CoV-2 virus infection of VERO-E6 cells. Furthermore, ISA 720-adjuvanted AKS-452 was immunogenic in rabbits and non-human primates (NHPs) and protected from infection and clinical symptoms with live SARS-CoV-2 virus in NHPs (USA-WA1/2020 viral strain) and the K18 human ACE2-trangenic (K18-huACE2-Tg) mouse (South African B.1.351 viral variant). These preclinical studies support the initiation of Phase I clinical studies with adjuvanted AKS-452 with the expectation that this room-temperature stable, Fc-fusion subunit vaccine can be rapidly and inexpensively manufactured to provide billions of doses per year especially in regions where the cold-chain is difficult to maintain.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19 , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Inmunoglobulina G , Ratones , Primates , Conejos , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2 , Vacunas de Subunidad
13.
FASEB J ; 23(5): 1338-46, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19103643

RESUMEN

Because of localized vascular damage and increased tissue oxygen demand, wound healing occurs in a relatively hypoxic microenvironment. These features are particularly relevant to wound healing and fibrosis in chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis. In these studies, we sought to identify the contribution of hypoxia to mechanisms of wound repair in a model of the intestinal submucosa. Initial studies revealed that hypoxia promotes wound healing, as modeled by an increase in intestinal fibroblast-mediated collagen gel contraction. Guided by results from transcriptional profiling, we identified the selective induction of fibroblast integrin beta1 (ITGB1) by hypoxia. Further analysis revealed that hypoxia, as well as pharmacological activators of hypoxia-inducible factor (HIF), induce fibroblast beta1 integrin mRNA, protein, and function by as much as 4-fold. Cloning and analysis of the beta1 integrin gene promoter revealed a 10 +/- 0.8-fold increase in promoter activity in response to hypoxia, and subsequent studies identified a functional DNA binding region for HIF in the ITGB1 gene promoter. Mutational analysis of the HIF binding site within the ITGB1 promoter resulted in a significant loss of ITGB1 hypoxia-inducibility. As proof of principle, studies in a murine model of colitis revealed a correlation between colitic disease severity and tissue ITGB1 expression (R(2)=0.80). Taken together, these results demonstrate that hypoxia induces fibroblast ITGB1 expression and function by transcriptional mechanisms dependent on HIF.


Asunto(s)
Factor 1 Inducible por Hipoxia/fisiología , Hipoxia/fisiopatología , Integrina beta1/genética , Cicatrización de Heridas/fisiología , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/fisiopatología , Colágeno/metabolismo , Células HeLa , Humanos , Ratones
14.
Horm Cancer ; 5(4): 218-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844349

RESUMEN

Hyperestrogenicity is a risk factor for endometrial cancer. 17ß-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα-positive, PTEN-positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, and T383), total PTEN, and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium.


Asunto(s)
Neoplasias Endometriales/metabolismo , Estrógenos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Neoplasias Endometriales/inducido químicamente , Neoplasias Endometriales/enzimología , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/metabolismo , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Fosfohidrolasa PTEN/genética , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
J Immunol ; 180(6): 4246-55, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18322237

RESUMEN

Inflammatory diseases influence tissue metabolism, altering regulation of extracellular adenine nucleotides, with a resultant protective influence of adenosine. Ecto-5'-nucleotidase (CD73) is a central surface enzyme generating extracellular adenosine. Thus, we hypothesized that CD73 is protective in mucosal inflammation as modeled by trinitrobenzene sulfonate (TNBS) colitis. Initial studies revealed a >3-fold induction of CD73 mRNA levels after TNBS colitis. Additionally, the severity of colitis was increased, as determined by weight loss and colonic shortening, in cd73(-/-) mice relative to cd73(+/+) controls. Likewise, enteral administration of the selective CD73 inhibitor alpha,beta-methylene ADP to cd73(+/+) mice resulted in a similar increase in severity of TNBS colitis. Gene array profiling of cytokine mRNA expression, verified by real-time PCR, revealed a >90% down-regulation of IFN-alphaA in cd73(-/-) mice and alpha,beta-methylene ADP-treated cd73(+/+) mice, compared with cd73(+/+) mice. Exogenous administration of recombinant IFN-alphaA partially protected TNBS-treated cd73(-/-) mice. Cytokine profiling revealed similar increases in both IFN-gamma and TNF-alpha mRNA in colitic animals, independent of genotype. However, IL-10 mRNA increased in wild-type mice on day 3 after TNBS administration, whereas cd73(-/-) mice mounted no IL-10 response. This IL-10 response was restored in the cd73(-/-) mice by exogenous IFN-alphaA. Further cytokine profiling revealed that this IL-10 induction is preceded by a transient IFN-alphaA induction on day 2 after TNBS exposure. Together, these studies indicate a critical regulatory role for CD73-modulated IFNalphaA in the acute inflammatory phase of TNBS colitis, thereby implicating IFN-alphaA as a protective element of adenosine signaling during mucosal inflammation.


Asunto(s)
5'-Nucleotidasa/fisiología , Mediadores de Inflamación/fisiología , Interferón-alfa/administración & dosificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/biosíntesis , 5'-Nucleotidasa/deficiencia , Enfermedad Aguda , Adenosina Difosfato/administración & dosificación , Adenosina Difosfato/análogos & derivados , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Progresión de la Enfermedad , Regulación hacia Abajo/inmunología , Interferón-alfa/antagonistas & inhibidores , Interferón-alfa/biosíntesis , Interferón-alfa/genética , Interleucina-10/biosíntesis , Interleucina-10/deficiencia , Interleucina-10/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Ácido Trinitrobencenosulfónico/toxicidad
16.
J Immunol ; 179(3): 1934-41, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17641060

RESUMEN

Central to the process of inflammation are hypoxic conditions that lead to the binding of circulating leukocytes to the endothelium. We have previously shown that such binding is mediated by monocytes being able to directly sense hypoxic conditions and respond by inducing their surface expression of the beta(2) integrin family of adhesion molecules. In this study, we show that coordinated induction of the beta(2) integrins during direct hypoxia-sensing occurs through transcriptional activation of each of the genes by which they are encoded. Certain of the molecular mechanisms that mediate this activation in transcription are dependent upon hypoxia-inducible factor-1 (HIF-1), whereas others are HIF-1 independent. In search of these HIF-1-independent mechanisms, we identified Pur alpha as a new hypoxia-response factor. Binding of Pur alpha to the HIF-1-independent beta(2) integrin promoters is induced by hypoxia and mutagenesis of these Pur alpha-binding sites almost completely abolishes the ability of the promoters to respond to hypoxic conditions. Additional studies using siRNA directed against Pur alpha also revealed a loss in the hypoxic response of the beta(2) integrin promoters. Taken together, our findings demonstrate that hypoxia induces a coordinated up-regulation in beta(2) integrin expression that is dependent upon transcriptional mechanisms mediated by HIF-1 and Pur alpha.


Asunto(s)
Antígenos CD18/biosíntesis , Antígenos CD18/genética , Proteínas de Unión al ADN/fisiología , Factor 1 Inducible por Hipoxia/fisiología , Hipoxia/metabolismo , Factores de Transcripción/fisiología , Antígenos CD11/biosíntesis , Antígenos CD11/genética , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Antígeno CD11c/biosíntesis , Antígeno CD11c/genética , Antígenos CD18/metabolismo , Adhesión Celular/genética , Adhesión Celular/inmunología , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Hipoxia/genética , Hipoxia/inmunología , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Familia de Multigenes , Regiones Promotoras Genéticas , Unión Proteica/genética , Unión Proteica/inmunología , ARN Mensajero/biosíntesis , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células U937 , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA