Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 29(3): 631-647, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36394183

RESUMEN

Distributional shifts in species ranges provide critical evidence of ecological responses to climate change. Assessments of climate-driven changes typically focus on broad-scale range shifts (e.g. poleward or upward), with ecological consequences at regional and local scales commonly overlooked. While these changes are informative for species presenting continuous geographic ranges, many species have discontinuous distributions-both natural (e.g. mountain or coastal species) or human-induced (e.g. species inhabiting fragmented landscapes)-where within-range changes can be significant. Here, we use an ecosystem engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a case study to assess climate-driven changes in within-range occupancy across its entire global distribution. To this end, we applied landscape ecology metrics to outputs from species distribution modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall increase in the area of potentially suitable habitat under RCP 4.5 by 2050, which taken in isolation would have led to the classification of the species as a climate change winner. SDM further revealed that the latitudinal range is predicted to shrink because of decreased habitat suitability in the equatorward part of the range, not compensated by a poleward expansion. The use of landscape ecology metrics provided additional insights by identifying regions that are predicted to become increasingly fragmented in the future, potentially increasing extirpation risk by jeopardising metapopulation dynamics. This increased range fragmentation could have dramatic consequences for ecosystem structure and functioning. Importantly, the proposed framework-which brings together SDM and landscape metrics-can be widely used to study currently overlooked climate-driven changes in species internal range structure, without requiring detailed empirical knowledge of the modelled species. This approach represents an important advancement beyond predictive envelope approaches and could reveal itself as paramount for managers whose spatial scale of action usually ranges from local to regional.


Asunto(s)
Cambio Climático , Ecosistema , Humanos
2.
Inj Prev ; 28(4): 318-324, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34972682

RESUMEN

INTRODUCTION: Imprecise data systems hinder understanding of drowning burden, even in high-income countries like Portugal, that have a well-implemented death certificate system. Consequently, national studies on drowning mortality are scarce. We aimed to explore drowning mortality in Portugal using national data and to compare these to Global Burden of Disease (GBD) estimates. METHODS: Data were obtained from the National Institute of Statistics (INE) for 1992-2019, using International Classification of Diseases (ICD)-9 and ICD-10 codes, by sex, age group and cause (unintentional; water transport and intentional). GBD unintentional drowning data were obtained online. Age-standardised drowning rates were calculated and compared. RESULTS: INE data showed 6057 drowning deaths, 4327 classified as unintentional (75.2% male; 36.7% 35-64 years; 31.5% 65+years; 15.2% 0-19 years). Following 2001, an increase in accidental drowning mortality and corresponding decrease in undetermined intent was observed, coincident with Portugal's ICD-10 implementation. GBD modelled estimates followed a downward trend at an overall rate of decrease of -0.41/decade (95% CI (-0.45 to -0.37); R2 adj=0.94; p<0.05). Conversely, INE data showed an increase in the rate of drowning deaths over the last decade (0.35/decade; 95% CI (-0.18 to 0.89)). GBD estimates were significantly different from the INE dataset (alpha=0.05), either underestimating as much as 0.567*INE in 1996 or overestimating as much as 1.473*INE in 2011. CONCLUSIONS: While GBD mortality data estimates are valuable in the absence of routinely collected data, they smooth variations, concealing key advocacy opportunities. Investment in country-level drowning registries enables in-depth analysis of incident circumstances. Such data are essential to informing National Water Safety Plans.


Asunto(s)
Ahogamiento , Carga Global de Enfermedades , Causas de Muerte , Femenino , Humanos , Masculino , Mortalidad , Portugal/epidemiología , Agua
3.
J Therm Biol ; 101: 103096, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34879914

RESUMEN

Global warming is challenging wild species in land and water. In the intertidal zone, species are already living at their thermal limits, being vulnerable even to small increases in maximum habitat temperatures. Knowledge of the mechanisms by which many intertidal zone species cope with elevated temperatures is limited. We analysed the molecular thermal stress response of the limpet Patella vulgata under slight and frequent (one-day), and extreme and rare (three-day) warming events. Using RNA-seq to assess differential gene expression among treatments, differing molecular responses were obtained in the two treatments, with more changes in gene expression after the three-day event; with one-third of the differentially expressed transcripts being down-regulated. However, across treatments we observed shifts in gene expression for common aspects of the heat stress response including intra-cellular communication, protein chaperoning, proteolysis and cell cycle arrest. Of the 71,675 transcripts obtained, only 259 were differentially expressed after both heating events. From these, 218 defined the core group (i.e. genes induced by thermal stress with similar expression patterns irrespective of the magnitude of the warming event). The core group was composed of already well-studied genes in heat stress responses in intertidal organisms (e.g. heat shock proteins), but also genes from less explored metabolic pathways, e.g. the ubiquitin system, which were also fundamental regardless of the magnitude of the imposed warming. Moreover, we have also identified 41 signaling genes (i.e. a set of genes responding to both events and with expression patterns specific to the intensity of thermal stress), principally including genes involved in the maintenance of extracellular structure that have previously not been identified as part of the response to thermal stress in intertidal zone organisms. These signaling genes will be useful heat stress molecular biomarkers for monitoring heat stress in natural populations.


Asunto(s)
Gastrópodos/genética , Respuesta al Choque Térmico/genética , Animales , Apoptosis , Puntos de Control del Ciclo Celular , ARN Mensajero , Temperatura , Transcriptoma
4.
BMC Evol Biol ; 20(1): 100, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778052

RESUMEN

BACKGROUND: Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS: We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS: As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.


Asunto(s)
Alveolados/genética , Genética de Población , Genómica , Adaptación Biológica , Animales , Arrecifes de Coral , Flujo Génico
5.
J Therm Biol ; 88: 102502, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125988

RESUMEN

Performance in poikilotherms is known to be sensitive to temperature, often with a low-sloping increase with temperature to a peak, and a steep decline with increasing temperature past the peak. We complemented past measures of performance by measuring heartbeat rates of the fiddler crab Leptuca pugilator in water and in air as a function of a range of temperatures previously shown to affect other measures of performance. In water over a range of 20-50 °C, heartbeat increased steadily to a peak at 40 °C and then steeply declined to near zero at 50 °C. In air, heartbeat also increased, but to a peak at 35 °C and then with a gentler decline than was found in water. Part of this different response may be due to evaporative water loss, which reduced body temperature in air, and therefore thermal stress, relative to body temperature when crabs were immersed in water. Increased availability of oxygen from air, according to the oxygen and capacity-limited thermal tolerance hypothesis, likely increased aerobic scope past the thermal peak, relative to within water, where oxygen delivery at higher temperatures may have been curtailed. We compared the heart rate performance relations to two previous measures of performance - endurance on a treadmill and sprint speed, both done in air. The peak performance temperature increased in the order: treadmill endurance time, sprint speed, heart rate in air, and heart rate in water, which demonstrates that different performance measures give different perspectives on the relation of thermal tolerance and fitness to temperature. Endurance may therefore be the limiting upper thermal stress factor in male fiddler crabs, when on hot sand flats. Temperature preference, found to be for temperatures <30 °C in air, could be a bet-hedging evolutionary strategy to avoid aerobic scope affecting endurance.


Asunto(s)
Braquiuros/fisiología , Frecuencia Cardíaca , Temperatura , Aire , Animales , Temperatura Corporal , Masculino , Consumo de Oxígeno , Condicionamiento Físico Animal , Agua
7.
Proc Natl Acad Sci U S A ; 113(6): 1582-7, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811467

RESUMEN

Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently "tracks" oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Océanos y Mares , Comunicaciones por Satélite , Tiburones/fisiología , Animales , Geografía , Estaciones del Año , Navíos , Factores de Tiempo
8.
Glob Chang Biol ; 22(10): 3320-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27109165

RESUMEN

As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores.


Asunto(s)
Cambio Climático , Temperatura , Aire , Animales , Océanos y Mares
9.
Glob Chang Biol ; 22(1): 254-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26426985

RESUMEN

This study examines the importance of thermal refugia along the majority of the geographical range of a key intertidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological performance and examined the availability of refugia near equatorial range limits. Thermal differences between sun-exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities supported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local populations (and consequently species) respond to climatic changes.


Asunto(s)
Gastrópodos/fisiología , Refugio de Fauna , Temperatura , Animales , Océano Atlántico , Temperatura Corporal , Ecosistema , Europa (Continente) , Geografía , Proteínas HSP70 de Choque Térmico/análisis , Estrés Fisiológico , Luz Solar
10.
J Therm Biol ; 57: 92-100, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27033044

RESUMEN

Understanding the physiological abilities of organisms to cope with heat stress is critical for predictions of species' distributions in response to climate change. We investigated physiological responses (respiration and heart beat rate) of the ectotherm limpet Patella vulgata to heat stress events during emersion and the role of seasonal and microclimatic acclimatization for individual thermal tolerance limits. Individuals were collected from 5 microhabitats characterized by different exposure to solar radiation in the high intertidal zone of a semi-exposed rocky shore in winter and summer of 2014. Upper thermal tolerance limits (heat coma temperatures - HCTs, and heart rate Arrhenius break temperatures - ABTs) were determined for individuals from each microhabitat in both seasons under laboratory conditions. While we found a clear seasonal acclimatization, i.e., higher HCTs and ABTs in summer than in winter, we did not find evidence for microhabitat-specific responses that would suggest microclimatic acclimatization. However, operative limpet temperatures derived from in-situ temperature measurements suggest that individuals from sun exposed microhabitats have a much narrower thermal safety margins than those from less exposed surfaces or within crevices. Microhabitat specific thermal safety margins caused by high thermal heterogeneity at small spatial scales and the lack of short term acclimatization will likely shape small scale distribution patterns of intertidal species in response to the predicted increase in the frequency and intensity of heat waves.


Asunto(s)
Aclimatación , Gastrópodos/fisiología , Luz Solar , Animales , Gastrópodos/efectos de la radiación
11.
Mar Drugs ; 11(4): 1256-70, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595054

RESUMEN

A growing market for novel antioxidants obtained from non-expensive sources justifies educated screening of microalgae for their potential antioxidant features. Characterization of the antioxidant profile of 18 species of cyanobacteria (prokaryotic microalgae) and 23 species of (eukaryotic) microalgae is accordingly reported in this paper. The total antioxidant capacity, accounted for by both water- and lipid-soluble antioxidants, was evaluated by the (radical cation) ABTS method. For complementary characterization of cell extracts, a deoxyribose assay was carried out, as well as a bacteriophage P22/Salmonella-mediated approach. The microalga Scenedesmus obliquus strain M2-1 exhibited the highest (p > 0.05) total antioxidant capacity (149 ± 47 AAU) of intracellular extracts. Its scavenger activity correlated well with its protective effects against DNA oxidative damage induced by copper(II)-ascorbic acid; and against decay in bacteriophage infection capacity induced by H2O2. Finally, performance of an Ames test revealed no mutagenic effects of the said extract.


Asunto(s)
Antioxidantes/farmacología , Depuradores de Radicales Libres/farmacología , Microalgas/química , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Bacteriófago P22 , Daño del ADN/efectos de los fármacos , Depuradores de Radicales Libres/aislamiento & purificación , Peróxido de Hidrógeno/toxicidad , Mutágenos , Salmonella typhimurium/virología , Solubilidad
12.
Biodivers Data J ; 10: e80798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437402

RESUMEN

Background: Climate change has been increasing at an unprecedented rate in the last decades. Global warming has been causing a variety of impacts in marine ecosystems, including shifts in the geographical ranges of species. The north-western Iberian Peninsula coast is particularly interesting to study distribution shifts as it features a strong latitude thermal gradient, establishing a biogeographical transitional region where several cold- and warm-adapted species have their equatorward or poleward distributions. In the early 2000s, it appeared that, while warm-water species were already responding to warming, cold-water species did not display a coherent response. It is now necessary to gather up-to-date data on the distribution of the same group of species to understand if current patterns of change confirm or deny those observed back then, which may give us important clues about the mechanisms setting species limits in the area. New information: This study provides a fine-scale description of the occurrence of intertidal macroalgae species in the rocky shores of the north-western Iberian coast. Specifically, the spatial distribution and semi-quantitative abundance of 34 native and invasive species were assessed at 70 wave-exposed locations. This included 19 species of cold-water affinity, 10 species of warm-water affinity and five neutral species. When contrasted with historical observations, these new data can be used to quantify and map biodiversity change in the region, as well as help understanding the mechanisms constraining species distributions.

13.
Integr Comp Biol ; 62(4): 1061-1075, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-35595471

RESUMEN

Openly shared low-cost electronic hardware applications, known as open electronics, have sparked a new open-source movement, with much untapped potential to advance scientific research. Initially designed to appeal to electronic hobbyists, open electronics have formed a global "maker" community and are increasingly used in science and industry. In this perspective article, we review the current costs and benefits of open electronics for use in scientific research ranging from the experimental to the theoretical sciences. We discuss how user-made electronic applications can help (I) individual researchers, by increasing the customization, efficiency, and scalability of experiments, while improving data quantity and quality; (II) scientific institutions, by improving access to customizable high-end technologies, sustainability, visibility, and interdisciplinary collaboration potential; and (III) the scientific community, by improving transparency and reproducibility, helping decouple research capacity from funding, increasing innovation, and improving collaboration potential among researchers and the public. We further discuss how current barriers like poor awareness, knowledge access, and time investments can be resolved by increased documentation and collaboration, and provide guidelines for academics to enter this emerging field. We highlight that open electronics are a promising and powerful tool to help scientific research to become more innovative and reproducible and offer a key practical solution to improve democratic access to science.


Asunto(s)
Electrónica , Investigadores , Animales , Humanos , Reproducibilidad de los Resultados
14.
Sci Rep ; 12(1): 19313, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369260

RESUMEN

Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as 'no', 'weak' or 'strong' upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can 'rescue' populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.


Asunto(s)
Clima , Refugio de Fauna , Temperatura , Estaciones del Año , Agua , Ecosistema
16.
Biodivers Data J ; 9: e72961, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720639

RESUMEN

BACKGROUND: The unprecedented rates of current biodiversity loss have motivated a renewed interest in environmental and biodiversity monitoring. The need for sustained monitoring strategies has prompted not only the establisment of new long-term monitoring programmes, but also the rescue of data from historical or otherwise archived sources. Amongst the most valuable datasets are those containing information on intertidal systems, as they are particularly well suited for studying the biological effects of climate change. The Portuguese rocky coast is quite interesting for studying the effects of climate change on the distribution of species due to its geographical orientation, latitudinal patterns in temperature, species richness, species' distribution patterns and availability of historical information. This work aims at providing a comprehensive picture of the distribution and abundance of intertidal macro-invertebrates and macro-algae along the Portuguese rocky coast in the early 2000s. NEW INFORMATION: This study provides a description of the rocky shore intertidal biodiversity of the mainland Portuguese coast in the early 2000s. The spatial distribution and semi-quantitative abundance of a total of 238 taxa were assessed at 49 wave-exposed locations. These data provide a comprehensive baseline against which biodiversity changes can be effectively and objectively evaluated.

17.
Sci Rep ; 11(1): 22986, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837006

RESUMEN

A complex interplay of biotic and abiotic factors underpins the distribution of species and operates across different levels of biological organization and life history stages. Understanding ecosystem engineer reproductive traits is critical for comprehending and managing the biodiversity-rich habitats they create. Little is known about how the reproduction of the reef-forming worm, Sabellaria alveolata, varies across environmental gradients. By integrating broad-scale environmental data with in-situ physiological data in the form of biochemical traits, we identified and ranked the drivers of intraspecific reproductive trait variability (ITV). ITV was highest in locations with variable environmental conditions, subjected to fluctuating temperature and hydrodynamic conditions. Our trait selection pointed to poleward sites being the most physiologically stressful, with low numbers of irregularly shaped eggs suggesting potentially reduced reproductive success. Centre-range individuals allocated the most energy to reproduction, with the highest number of intermediate-sized eggs, whilst equatorward sites were the least physiologically stressful, thus confirming the warm-adapted nature of our model organism. Variation in total egg diameter and relative fecundity were influenced by a combination of environmental conditions, which changed depending on the trait and sampling period. An integrated approach involving biochemical and reproductive traits is essential for understanding macro-scale patterns in the face of anthropogenic-induced climate change across environmental and latitudinal gradients.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Cambio Climático , Ecosistema , Óvulo/fisiología , Poliquetos/fisiología , Reproducción , Animales , Fertilidad , Fenotipo
18.
Conserv Physiol ; 7(1): coz028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31423312

RESUMEN

The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating 'physiological landscapes' that display spatially and temporally explicit patterns of 'microrefugia'. Our framework shows how non-linear interactions between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the 'thermal roughness' of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches.

19.
Sci Total Environ ; 639: 1501-1511, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929313

RESUMEN

Long-term sea surface temperature (SST) warming trends are far from being homogeneous, especially when coastal and ocean locations are compared. Using data from NOAA's AVHRR OISST, we have analyzed sea surface temperature trends over the period 1982-2015 at around 3500 worldwide coastal points and their oceanic counterparts with a spatial resolution of 0.25 arc-degrees. Significant warming was observed at most locations although with important differences between oceanic and coastal points. This is especially patent for upwelling regions, where 92% of the coastal locations showed lower warming trends than at neighboring ocean locations. This result strongly suggests that upwelling has the potential to buffer the effects of global warming nearshore, with wide oceanographic, climatic, and biogeographic implications.

20.
Sci Rep ; 7: 41817, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28150720

RESUMEN

Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Ecosistema , Teorema de Bayes , Cabo Verde , Evolución Molecular , Genes Mitocondriales , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA