Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
World J Microbiol Biotechnol ; 40(3): 95, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349445

RESUMEN

Marine sediments constitute the world's most substantial long-term carbon repository. The microorganisms dwelling in these sediments mediate the transformation of fixed oceanic carbon, but their contribution to the carbon cycle is not fully understood. Previous culture-independent investigations into sedimentary microorganisms have underscored the significance of carbohydrates in the carbon cycle. In this study, we employ a metagenomic methodology to investigate the distribution and abundance of carbohydrate-active enzymes (CAZymes) in 37 marine sediments sites. These sediments exhibit varying oxygen availability and were isolated in diverse regions worldwide. Our comparative analysis is based on the metabolic potential for oxygen utilisation, derived from genes present in both oxic and anoxic environments. We found that extracellular CAZyme modules targeting the degradation of plant and algal detritus, necromass, and host glycans were abundant across all metagenomic samples. The analysis of these results indicates that the oxic/anoxic conditions not only influence the taxonomic composition of the microbial communities, but also affect the occurrence of CAZyme modules involved in the transformation of necromass, algae and plant detritus. To gain insight into the sediment microbial taxa, we reconstructed metagenome assembled genomes (MAG) and examined the presence of primary extracellular carbohydrate active enzyme (CAZyme) modules. Our findings reveal that the primary CAZyme modules and the CAZyme gene clusters discovered in our metagenomes were prevalent in the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. We compared those MAGs to organisms from the same taxonomic classes found in soil, and we found that they were similar in its CAZyme repertoire, but the soil MAG contained a more abundant and diverse CAZyme content. Furthermore, the data indicate that abundant classes in our metagenomic samples, namely Alphaproteobacteria, Bacteroidia and Gammaproteobacteria, play a pivotal role in carbohydrate transformation within the initial few metres of the sediments.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Metagenoma , Bacteroidetes , Biodiversidad , Carbono , Sedimentos Geológicos , Oxígeno , Suelo
2.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410634

RESUMEN

Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.


Asunto(s)
Bacterias , Zea mays , Zea mays/microbiología , México , Bacterias/genética , Streptococcus/metabolismo , Fermentación
3.
Microbiology (Reading) ; 166(11): 1007-1018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141007

RESUMEN

Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Microbiota-Huesped , Inmunidad de la Planta , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Células Vegetales/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Proteins ; 83(2): 215-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25388639

RESUMEN

Expansins are a family of proteins with plant cell wall remodeling-activity, which bind cell wall components through hydrophobic and electrostatic interactions. A shallow area on the surface of the protein serves as the polysaccharide binding site (PBS) and it is composed of conserved residues. However, electric charge differences on the opposite face of the PBS produce basic, neutral, or acidic proteins. An analysis of forty-four bacterial expansins, homologues of BsEXLX1, revealed two main groups defined by: (a) the presence or absence of disulfide bonds; and (b) by the proteins isoelectric point (pI). We determined the location of the residues responsible for the pI on the structure of representative expansins. Our results suggest that the electric charge at the opposite site of the PBS may help in substrate differentiation among expansins from different species; in addition, electrostatic polarization between the front and the back of the molecule could affect expansin activity on cellulose.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Plantas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Electroquímica , Punto Isoeléctrico , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Propiedades de Superficie
5.
BMC Genomics ; 15: 800, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25230797

RESUMEN

BACKGROUND: Nucleotide metabolism is central to all biological systems, due to their essential role in genetic information and energy transfer, which in turn suggests its possible presence in the last common ancestor (LCA) of Bacteria, Archaea and Eukarya. In this context, elucidation of the contribution of the origin and diversification of de novo and salvage pathways of nucleotide metabolism will allow us to understand the links between the enzymatic steps associated with the LCA and the emergence of the first metabolic pathways. RESULTS: In this work, the taxonomical distribution of the enzymes associated with nucleotide metabolism was evaluated in 1,606 complete genomes. 151 sequence profiles associated with 120 enzymatic reactions were used. The evaluation was based on profile comparisons, using RPS-Blast. Organisms were clustered based on their taxonomical classifications, in order to obtain a normalized measure of the taxonomical distribution of enzymes according to the average of presence/absence of enzymes per genus, which in turn was used for the second step, to calculate the average presence/absence of enzymes per Clade. CONCLUSION: From these analyses, it was suggested that divergence at the enzymatic level correlates with environmental changes and related modifications of the cell wall and membranes that took place during cell evolution. Specifically, the divergence of the 5-(carboxyamino) imidazole ribonucleotide mutase to phosphoribosylaminoimidazole carboxylase could be related to the emergence of multicellularity in eukaryotic cells. In addition, segments of salvage and de novo pathways were probably complementary in the LCA to the synthesis of purines and pyrimidines. We also suggest that a large portion of the pathway to inosine 5'-monophosphate (IMP) in purines could have been involved in thiamine synthesis or its derivatives in early stages of cellular evolution, correlating with the fact that these molecules may have played an active role in the protein-RNA world. The analysis presented here provides general observations concerning the adaptation of the enzymatic steps in the early stages of the emergence of life and the LCA.


Asunto(s)
Archaea/genética , Bacterias/genética , Eucariontes/genética , Evolución Molecular , Genómica , Nucleótidos/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Eucariontes/metabolismo
6.
Sci Rep ; 14(1): 2770, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307936

RESUMEN

Late Embryogenesis Abundant (LEA) proteins are a group of intrinsically disordered proteins implicated in plant responses to water deficit. In vitro studies revealed that LEA proteins protect reporter enzymes from inactivation during low water availability. Group 4 LEA proteins constitute a conserved protein family, displaying in vitro protective capabilities. Under water deficiency or macromolecular crowding, the N-terminal of these proteins adopts an alpha-helix conformation. This region has been identified as responsible for the protein in vitro protective activity. This study investigates whether the attainment of alpha-helix conformation and/or particular amino acid residues are required for the in vitro protective activity. The LEA4-5 protein from Arabidopsis thaliana was used to generate mutant proteins. The mutations altered conserved residues, deleted specific conserved regions, or introduced prolines to hinder alpha-helix formation. The results indicate that conserved residues are not essential for LEA4-5 protective function. Interestingly, the C-terminal region was found to contribute to this function. Moreover, alpha-helix conformation is necessary for the protective activity only when the C-terminal region is deleted. Overall, LEA4-5 shows the ability to adopt alternative functional conformations under the tested conditions. These findings shed light on the in vitro mechanisms by which LEA proteins protect against water deficit stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Agua/metabolismo , Desarrollo Embrionario
7.
PLoS One ; 17(3): e0265422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290420

RESUMEN

Cells have developed diverse mechanisms to monitor changes in their surroundings. This allows them to establish effective responses to cope with adverse environments. Some of these mechanisms have been well characterized in the budding yeast Saccharomyces cerevisiae, an excellent experimental model to explore and elucidate some of the strategies selected in eukaryotic organisms to adjust their growth and development in stressful conditions. The relevance of structural disorder in proteins and the impact on their functions has been uncovered for proteins participating in different processes. This is the case of some transcription factors (TFs) and other signaling hub proteins, where intrinsically disordered regions (IDRs) play a critical role in their function. In this work, we present a comprehensive bioinformatic analysis to evaluate the significance of structural disorder in those TFs (170) recognized in S. cerevisiae. Our findings show that 85.2% of these TFs contain at least one IDR, whereas ~30% exhibit a higher disorder level and thus were considered as intrinsically disordered proteins (IDPs). We also found that TFs contain a higher number of IDRs compared to the rest of the yeast proteins, and that intrinsically disordered TFs (IDTFs) have a higher number of protein-protein interactions than those with low structural disorder. The analysis of different stress response pathways showed a high content of structural disorder not only in TFs but also in other signaling proteins. The propensity of yeast proteome to undergo a liquid-liquid phase separation (LLPS) was also analyzed, showing that a significant proportion of IDTFs may undergo this phenomenon. Our analysis is a starting point for future research on the importance of structural disorder in yeast stress responses.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Biología Computacional , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
8.
Proteins ; 79(5): 1662-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21365689

RESUMEN

Based on integrative computational hybrid approaches that combined statistical coupling analysis (SCA), molecular dynamics (MD), and normal mode analysis (NMA), evolutionarily coupled residues involved in functionally relevant motion in the adenylate kinase protein family were identified. The hybrids identified four top-ranking site pairs that belong to a conserved hydrogen bond network that is involved in the enzyme's flexibility. A second group of top-ranking site pairs was identified in critical regions for functional dynamics, such as those related to enzymatic turnover. The high consistency of the results obtained by SCA with NMA (SCA.NMA) and by SCA.MD hybrid analyses suggests that suitable replacement of the matrix of cross-correlation analysis of atomic fluctuations (derived by using NMA) with those based on MD contributes to the identification of such sites by means of a fast computational calculation. The analysis presented here strongly supports the hypothesis that evolutionary forces, such as coevolution at the sequence level, have promoted functional dynamic properties of the adenylate kinase protein family. Finally, these hybrid approaches can be used to identify, at the residue level, protein motion coordination patterns not previously observed, such as in hinge regions.


Asunto(s)
Adenilato Quinasa/química , Simulación de Dinámica Molecular , Aminoácidos/química , Animales , Bases de Datos de Proteínas , Humanos , Enlace de Hidrógeno , Conformación Proteica
9.
Microbiology (Reading) ; 157(Pt 8): 2308-2318, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21636649

RESUMEN

The ability of bacteria to deal with diverse environmental changes depends on their repertoire of genes and their ability to regulate their expression. In this process, DNA-binding transcription factors (TFs) have a fundamental role because they affect gene expression positively and/or negatively depending on operator context and ligand-binding status. Here, we show an exhaustive analysis of winged helix-turn-helix domains (wHTHs), a class of DNA-binding TFs. These proteins were identified in high proportions and widely distributed in bacteria, representing around half of the total TFs identified so far. In addition, we evaluated the repertoire of wHTHs in terms of their partner domains (PaDos), identifying a similar trend, as with TFs, i.e. they are abundant and widely distributed in bacteria. Based on the PaDos, we defined three main groups of families: (i) monolithic, those families with little PaDo diversity, such as LysR; (ii) promiscuous, those families with a high PaDo diversity; and (iii) monodomain, with families of small sizes, such as MarR. These findings suggest that PaDos have a very important role in the diversification of regulatory responses in bacteria, probably contributing to their regulatory complexity. Thus, the TFs discriminate over longer regions on the DNA through their diverse DNA-binding domains. On the other hand, the PaDos would allow a great flexibility for transcriptional regulation due to their ability to sense diverse stimuli through a variety of ligand-binding compounds.


Asunto(s)
Bacterias/genética , Regulación Bacteriana de la Expresión Génica , Variación Genética , Estrés Fisiológico , Factores de Transcripción/genética , Análisis por Conglomerados , ADN Bacteriano/metabolismo , Secuencias Hélice-Giro-Hélice/genética , Unión Proteica , Factores de Transcripción/metabolismo
10.
Microb Cell Fact ; 10: 8, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21314954

RESUMEN

BACKGROUND: Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. RESULTS: Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. CONCLUSIONS: LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.


Asunto(s)
Celulosa/metabolismo , Coriolaceae/metabolismo , Proteínas Fúngicas/metabolismo , Secuencia de Aminoácidos , Celulosa/química , Quitina/química , Quitina/metabolismo , Clonación Molecular , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Temperatura
11.
12.
Front Microbiol ; 12: 629449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815312

RESUMEN

The genus Weissella is composed of a group of Gram-positive facultative anaerobe bacteria with fermentative metabolism. Strains of this genus have been isolated from various ecological niches, including a wide variety of fermented cereal foods. The present study aimed to determine the relative abundance and fermentation capabilities of Weissella species isolated from pozol, a traditional maya product made of lime-cooked (nixtamalized) fermented maize. We sequenced the V3-V4 regions of 16S rDNA; Weissella was detected early in the fermentation process and reached its highest relative abundance (3.89%) after 3 h of culture. In addition, we evaluated five Weissella strains previously isolated from pozol but reported as non-amylolytic, to define alternative carbon sources such as xylan, xylooligosaccharides, and sucrose. While no growth was observed on birch xylan, growth did occur on xylooligosaccharides and sucrose. Strains WcL17 and WCP-3A were selected for genomic sequencing, as the former shows efficient growth on xylooligosaccharides and the latter displays high glycosyltransferase (GTF) activity. Genomes of both strains were assembled and recorded, with a total of 2.3 Mb in 30 contigs for WcL17 and 2.2 Mb in 45 contigs for WCP-3a. Both strains were taxonomically assigned to Weissella confusa and genomic analyses were performed to evaluate the gene products encoding active carbohydrate enzymes (CAZy). Both strains have the gene content needed to metabolize sucrose, hemicellulose, cellulose, and starch residues, all available in pozol. Our results suggest that the range of secondary enzymatic activity in Weissella confusa strains confer them with wide capabilities to participate in fermentative processes of natural products with heterogeneous carbon sources.

13.
Front Microbiol ; 12: 781497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178038

RESUMEN

Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.

14.
Sci Rep ; 10(1): 7747, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385404

RESUMEN

Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species.


Asunto(s)
Arabidopsis/citología , Pectobacterium/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Virulencia/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Oxilipinas/metabolismo , Pectobacterium/citología , Pectobacterium/genética , Pectobacterium/fisiología , Percepción de Quorum , Ácido Salicílico/metabolismo , Virulencia , Factores de Virulencia/genética
16.
Front Microbiol ; 11: 1825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903729

RESUMEN

The Gulf of Mexico (GoM) is a particular environment that is continuously exposed to hydrocarbon compounds that may influence the microbial community composition. We carried out a metagenomic assessment of the bacterial community to get an overall view of this geographical zone. We analyzed both taxonomic and metabolic markers profiles to explain how the indigenous GoM microorganims participate in the biogeochemical cycling. Two geographically distant regions in the GoM, one in the north-west (NW) and one in the south-east (SE) of the GoM were analyzed and showed differences in their microbial composition and metabolic potential. These differences provide evidence the delicate equilibrium that sustains microbial communities and biogeochemical cycles. Based on the taxonomy and gene groups, the NW are more oxic sediments than SE ones, which have anaerobic conditions. Both water and sediments show the expected sulfur, nitrogen, and hydrocarbon metabolism genes, with particularly high diversity of the hydrocarbon-degrading ones. Accordingly, many of the assigned genera were associated with hydrocarbon degradation processes, Nitrospira and Sva0081 were the most abundant in sediments, while Vibrio, Alteromonas, and Alcanivorax were mostly detected in water samples. This basal-state analysis presents the GoM as a potential source of aerobic and anaerobic hydrocarbon degradation genes important for the ecological dynamics of hydrocarbons and the potential use for water and sediment bioremediation processes.

17.
Proteins ; 70(1): 248-56, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17671981

RESUMEN

Homology detection and protein structure prediction are central themes in bioinformatics. Establishment of relationship between protein sequences or prediction of their structure by sequence comparison methods finds limitations when there is low sequence similarity. Recent works demonstrate that the use of profiles improves homology detection and protein structure prediction. Profiles can be inferred from protein multiple alignments using different approaches. The "Conservatism-of-Conservatism" is an effective profile analysis method to identify structural features between proteins having the same fold but no detectable sequence similarity. The information obtained from protein multiple alignments varies according to the amino acid classification employed to calculate the profile. In this work, we calculated entropy profiles from PSI-BLAST-derived multiple alignments and used different amino acid classifications summarizing almost 500 different attributes. These entropy profiles were converted into pseudocodes which were compared using the FASTA program with an ad-hoc matrix. We tested the performance of our method to identify relationships between proteins with similar fold using a nonredundant subset of sequences having less than 40% of identity. We then compared our results using Coverage Versus Error per query curves, to those obtained by methods like PSI-BLAST, COMPASS and HHSEARCH. Our method, named HIP (Homology Identification with Profiles) presented higher accuracy detecting relationships between proteins with the same fold. The use of different amino acid classifications reflecting a large number of amino acid attributes, improved the recognition of distantly related folds. We propose the use of pseudocodes representing profile information as a fast and powerful tool for homology detection, fold assignment and analysis of evolutionary information enclosed in protein profiles.


Asunto(s)
Entropía , Proteínas/química , Secuencia de Aminoácidos , Aminoácidos/química , Datos de Secuencia Molecular , Pliegue de Proteína
18.
BMC Syst Biol ; 12(1): 63, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848336

RESUMEN

BACKGROUND: Metabolic reactions are chemical transformations commonly catalyzed by enzymes. In recent years, the explosion of genomic data and individual experimental characterizations have contributed to the construction of databases and methodologies for the analysis of metabolic networks. Some methodologies based on graph theory organize compound networks into metabolic functional categories without preserving biochemical pathways. Other methods based on chemical group exchange and atom flow trace the conversion of substrates into products in detail, which is useful for inferring metabolic pathways. METHODS: Here, we present a novel rule-based approach incorporating both methods that decomposes each reaction into architectures of compound pairs and loner compounds that can be organized into tree structures. We compared the tree structure-compound pairs to those reported in the KEGG-RPAIR dataset and obtained a match precision of 81%. The generated tree structures naturally clustered all reactions into general reaction patterns of compounds with similar chemical transformations. The match precision of each cluster was calculated and used to suggest reactant-pairs for which manual curation can be avoided because this is the main goal of the method. We evaluated catalytic processes in the clusters based on Enzyme Commission categories that revealed preferential use of enzyme classes. CONCLUSIONS: We demonstrate that the application of simple rules can enable the identification of reaction patterns reflecting metabolic reactions that transform substrates into products and the types of catalysis involved in these transformations. Our rule-based approach can be incorporated as the input in pathfinders or as a tool for the construction of reaction classifiers, indicating its usefulness for predicting enzyme catalysis.


Asunto(s)
Biología Computacional/métodos , Enzimas/metabolismo , Redes y Vías Metabólicas
19.
Sci Rep ; 8(1): 12034, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104688

RESUMEN

Metagenomics research has recently thrived due to DNA sequencing technologies improvement, driving the emergence of new analysis tools and the growth of taxonomic databases. However, there is no all-purpose strategy that can guarantee the best result for a given project and there are several combinations of software, parameters and databases that can be tested. Therefore, we performed an impartial comparison, using statistical measures of classification for eight bioinformatic tools and four taxonomic databases, defining a benchmark framework to evaluate each tool in a standardized context. Using in silico simulated data for 16S rRNA amplicons and whole metagenome shotgun data, we compared the results from different software and database combinations to detect biases related to algorithms or database annotation. Using our benchmark framework, researchers can define cut-off values to evaluate the expected error rate and coverage for their results, regardless the score used by each software. A quick guide to select the best tool, all datasets and scripts to reproduce our results and benchmark any new method are available at https://github.com/Ales-ibt/Metagenomic-benchmark . Finally, we stress out the importance of gold standards, database curation and manual inspection of taxonomic profiling results, for a better and more accurate microbial diversity description.


Asunto(s)
Biología Computacional/métodos , Leptospira interrogans/genética , Metagenoma/genética , Metagenómica/métodos , Algoritmos , Secuencia de Bases , Bases de Datos Genéticas , Leptospira interrogans/clasificación , Anotación de Secuencia Molecular/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Programas Informáticos
20.
ACS Omega ; 3(6): 7008-7018, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30221235

RESUMEN

The plant xylem is a preferred niche for some important bacterial phytopathogens, some of them encoding expansin proteins, which bind plant cell walls. Yet, the identity of the substrate for bacterial expansins within the plant cell wall and the nature of its interaction with it are poorly known. Here, we determined the localization of two bacterial expansins with differing isoelectric points (and with differing binding patterns to cell wall extracts) on plant tissue through in vitro fluorophore labeling and confocal imaging. Differential localization was observed, in which Exl1 from Pectobacterium carotovorum located into the intercellular spaces between xylem vessels and adjacent cells of the plant xylem, whereas EXLX1 from Bacillus subtilis bound cell walls of most cell types. In isolated vascular tissue, however, both PcExl1 and BsEXLX1 preferentially bound to tracheary elements over the xylem fibers, even though both are composed of secondary cell walls. Fluorescence correlation spectroscopy, employed to analyze the interaction of expansins with isolated xylem, indicates that binding is governed by more than one factor, which could include interaction with more than one type of polymer in the fibers, such as cellulose and hemicellulose or pectin. Binding to different polysaccharides could explain the observed reduction of cellulolytic and xylanolytic activities in the presence of expansin, possibly because of competition for the substrate. Our findings are relevant for the comprehensive understanding of the pathogenesis by P. carotovorum during xylem invasion, a process in which Exl1 might be involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA