Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Exp Bot ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329465

RESUMEN

During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating a role in tailored environmental acclimatization. This hypothesis has been validated experimentally and theoretically during the last decades. Recent developments of dynamic roGFP-based in vivo sensors for H2O2 and the redox potential of the glutathione pool paved the way for dissecting the kinetics changes in these decisive parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review exemplarily describes the role of the redox- and ROS-dependent regulatory network in realising the proper response to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen, or phosphate shortage as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox regulatory and ROS network, but the present state of knowledge also pinpoints to pressing open questions concerning the translation of redox regulation to environmental acclimatization.

2.
Biochem J ; 477(19): 3673-3693, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32897311

RESUMEN

In yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2. In this study, redox-effects on activity and structure of all three cyMDH isoforms were analyzed in vitro. cyMDH1 and cyMDH2 were reversibly inactivated by diamide treatment, accompanied by dimerization via disulfide-bridge formation. In contrast, cyMDH3 forms dimers and higher oligomers upon oxidation, but its low specific activity is redox-independent. In the presence of glutathione, cyMDH1 and cyMDH2 are protected from dimerization and inactivation. In contrast, cyMDH3 still dimerizes but does not form oligomers any longer. From analyses of single and double cysteine mutants and structural modeling of cyMDH3, we conclude that the presence of C2 and C336 allows for multiple cross-links in the higher molecular mass complexes comprising disulfides within the dimer as well as between monomers of two different dimers. Furthermore, nuclear localization of cyMDH isoforms was significantly increased under oxidizing conditions in isolated Arabidopsis protoplasts, in particular of isoform cyMDH3. The unique cyMDH3 C2-C2-linked dimer is, therefore, a good candidate as a redox-sensor taking over moonlighting functions upon disturbances of energy metabolism, as shown previously for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) where oxidative modification of the sensitive catalytic cysteine residues induces nuclear translocation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metabolismo Energético , Malato Deshidrogenasa/metabolismo , Multimerización de Proteína , Transducción de Señal , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Malato Deshidrogenasa/genética , Mutación Missense , Oxidación-Reducción
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638573

RESUMEN

13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s-1·mg protein-1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipooxigenasa/metabolismo , Acetatos/metabolismo , Secuencia de Aminoácidos , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Linoleicos/metabolismo , Oxilipinas/metabolismo
4.
Plant Cell Environ ; 42(2): 574-590, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30198184

RESUMEN

Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arsénico/toxicidad , Raíces de Plantas/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Glutatión/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transcriptoma/efectos de los fármacos
5.
Phys Chem Chem Phys ; 21(12): 6725-6731, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30860213

RESUMEN

In our present work we present an approach which allows one to confine proteins in structurally nearly identical bicontinuous microemulsions with systematically decreasing water domain size. It is shown that sub-diffusive behaviour occurs already at water domain sizes below 13 nm. However, above 13 nm normal diffusion is seen. Moreover, we compare protein diffusion in microemulsions to the transport of a much smaller fluorescent dye.

6.
Plant J ; 82(5): 840-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25891958

RESUMEN

Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P-type H(+) -ATPases in the plasma membrane, and multimeric vacuolar-type H(+) -ATPases (V-ATPases) and vacuolar H(+) -pyrophosphatases (H(+) -PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A -ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA-filled central vacuoles as observed in the wild-type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P-type H(+) -ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H(+) -PPase VHP1. Our findings indicate that the P3A -ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12-mediated transport of PA precursors to the vacuole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proantocianidinas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Semillas/metabolismo , Vacuolas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutación , Petunia/genética , Plantas Modificadas Genéticamente , ATPasas de Translocación de Protón/genética , Semillas/genética , Vacuolas/genética
7.
Mol Hum Reprod ; 22(12): 867-881, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27604460

RESUMEN

STUDY QUESTION: Can supplementation of media with a glutathione (GSH) donor, glutathione ethyl ester (GEE), prior to vitrification protect the mouse oocyte from oxidative damage and critical changes in redox homeostasis, and thereby improve cryotolerance? SUMMARY ANSWER: GEE supplementation supported redox regulation, rapid recovery of spindle and chromosome alignment after vitrification/warming and improved preimplantation development of mouse metaphase II (MII) oocytes. WHAT IS KNOWN ALREADY: Cryopreservation may affect mitochondrial functionality, induce oxidative stress, and thereby affect spindle integrity, chromosome segregation and the quality of mammalian oocytes. GEE is a membrane permeable GSH donor that promoted fertilization and early embryonic development of macaque and bovine oocytes after IVM. STUDY DESIGN, SIZE, DURATION: Two experimental groups consisted of (i) denuded mouse germinal vesicle (GV) oocytes that were matured in vitro in the presence or absence of 1 mM GEE (IVM group 1) and (ii) in vivo ovulated (IVO) MII oocytes that were isolated from the ampullae and exposed to 1 mM GEE for 1 h prior to vitrification (IVO group 2). Recovery of oocytes from both groups was followed after CryoTop vitrification/warming for up to 2 h and parthenogenetic activation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Reactive oxygen species (ROS), spindle morphology and chromosome alignment were analyzed by confocal laser scanning microscopy (CLSM) and polarization microscopy in control and GEE-supplemented MII oocytes. The relative overall intra-oocyte GSH content was assessed by analysis of monochlorobimane (MBC)-GSH adduct fluorescence in IVM MII oocytes. The GSH-dependent intra-mitochondrial redox potential (EmGSH) of IVM MII oocytes was determined after microinjection with specific mRNA at the GV stage to express a redox-sensitive probe within mitochondria (mito-Grx1-roGFP2). The absolute negative redox capacity (in millivolts) was determined by analysis of fluorescence of the oxidized versus the reduced form of sensor by CLSM and quantification according to Nernst equation. Proteome analysis was performed by quantitative 2D saturation gel electrophoresis (2D DIGE). Since microinjection and expression of redox sensor mRNA required removal of cumulus cells, and IVM of denuded mouse oocytes in group 1 induces zona hardening, the development to blastocysts was not assessed after IVF but instead after parthenogenetic activation of vitrified/warmed MII oocytes from both experimental groups. MAIN RESULTS AND ROLE OF CHANCE: IVM of denuded mouse oocytes in the presence of 1 mM GEE significantly increased intra-oocyte GSH content. ROS was not increased by CryoTop vitrification but was significantly lower in the IVM GEE group compared to IVM without GEE before vitrification and after recovery from vitrification/warming (P < 0.001). Vitrification alone significantly increased the GSH-dependent intra-mitochondrial redox capacity after warming (EmGSH, P < 0.001) in IVM oocytes, presumably by diffusion/uptake of cytoplasmic GSH into mitochondria. The presence of 1 mM GEE during IVM increased the redox capacity before vitrification and there was no further increase after vitrification/warming. None of the reproducibly detected 1492 spots of 2D DIGE separated proteins were significantly altered by vitrification or GEE supplementation. However, IVM of denuded oocytes significantly affected spindle integrity and chromosome alignment right after warming from vitrification (0 h) in group 1 and spindle integrity in group 2 (P < 0.05). GEE improved recovery in IVM group as numbers of oocytes with unaligned chromosomes and aberrant spindles was not significantly increased compared to unvitrified controls. The supplementation with GEE for 1 h before vitrification also supported more rapid recovery of spindle birefringence. GEE improved significantly development to the 2-cell stage for MII oocytes that were activated directly after vitrification/warming in both experimental groups, and also the blastocyst rate in the IVO GEE-supplemented group compared to the controls (P < 0.05). LARGE SCALE DATA: None LIMITATIONS, REASONS FOR CAUTION: The studies were carried out in a mouse model, in IVM denuded rather than cumulus-enclosed oocytes, and in activated rather than IVF MII oocytes. Whether the increased GSH-dependent intra-mitochondrial redox capacity also improves male pronuclear formation needs to be studied further experimentally. The influence of GEE supplementation requires also further examination and optimization in human oocytes before it can be considered for clinical ART. WIDER IMPLICATIONS OF THE FINDINGS: Although GEE supplementation did not alter the proteome at MII, the GSH donor may support cellular homeostasis and redox regulation and, thus, increase developmental competence. While human MII oocyte vitrification is an established procedure, GEE might be particularly beneficial for oocytes that suffer from oxidative stress and reduced redox capacity (e.g. aged oocytes) or possess low GSH due to a reduced supply of GSH from cumulus. It might also be of relevance for immature human oocytes that develop without cumulus to MII in vitro (e.g. in ICSI cycles) for ART. STUDY FUNDING AND COMPETING INTERESTS: The study has been supported by the German Research Foundation (DFG FOR 1041; EI 199/3-2). There are no conflict of interests.


Asunto(s)
Glutatión/análogos & derivados , Oocitos/efectos de los fármacos , Animales , Femenino , Glutatión/metabolismo , Glutatión/farmacología , Metafase/efectos de los fármacos , Metafase/genética , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vitrificación/efectos de los fármacos
8.
New Phytol ; 211(3): 1092-107, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27214749

RESUMEN

Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes.


Asunto(s)
Ácidos/metabolismo , Evolución Molecular , Proteínas de Transporte de Membrana/metabolismo , Petunia/enzimología , ATPasas de Translocación de Protón/metabolismo , Vacuolas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cationes , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/química , Rosa/genética , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo , Vitis/genética
9.
J Biol Chem ; 288(45): 32138-32148, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24064210

RESUMEN

Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Receptores de Endotelina/metabolismo , Sustitución de Aminoácidos , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Mutación Missense , Fosforilación/fisiología , Transporte de Proteínas/fisiología , Receptores de Endotelina/genética , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
10.
Biochim Biophys Acta ; 1833(12): 2866-2878, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23872422

RESUMEN

Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.


Asunto(s)
Núcleo Celular/metabolismo , Ciclohexanoles/farmacología , Monoterpenos/farmacología , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclohexanoles/química , Eucaliptol , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/enzimología , Lipopolisacáridos/farmacología , Modelos Biológicos , Monoterpenos/química , Inhibidor NF-kappaB alfa , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Methods Mol Biol ; 2832: 115-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869791

RESUMEN

Proteins often show alterations in their subcellular localization with changing environmental conditions; transcription factors enter the nucleus or are actively removed from the nucleus; some even bind to endo-membranes by conditional membrane anchors; and other proteins and mRNA arrange in RNA granules. These are some examples of the complex regulation of subcellular localization, which often depends on posttranslational modifications and is triggered by environmental stressors. The challenge is the precise identification of the compartments, the quantitative analysis of proteins, which reside in multiple compartments, and their transport dynamics. Therefore, appropriate compartment markers and routines for a reproducible quantitative workflow are required.


Asunto(s)
Estrés Fisiológico , Transporte de Proteínas , Proteínas/metabolismo , Fracciones Subcelulares/metabolismo , Humanos , Proteómica/métodos , Núcleo Celular/metabolismo
12.
Plants (Basel) ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256848

RESUMEN

Plant cells are omnipotent and breeding of new varieties can be achieved by protoplast fusion. Such fusions can be achieved by treatment with poly(ethylene glycol) or by applying an electric field. Microfluidic devices allow for controlled conditions and targeted manipulation of small batches of cells down to single-cell analysis. To provide controlled conditions for protoplast fusions and achieve high reproducibility, we developed and characterized a microfluidic device to reliably trap some Arabidopsis thaliana protoplasts and induced cell fusion by controlled addition of poly(ethylene glycol) (PEG, with a molecular weight of 6000). Experiments were conducted to determine the survival rate of isolated protoplasts in our microfluidic system. Afterward, PEG-induced fusion was studied. Our results indicate that the following fusion parameters had a significant impact on the fusion efficiency and duration: PEG concentration, osmolality of solution and flow velocity. A PEG concentration below 10% led to only partial fusion. The osmolality of the PEG fusion solution was found to strongly impact the fusion process; complete fusion of two source cells sufficiently took part in slightly hyper-osmotic solutions, whereas iso-osmotic solutions led to only partial fusion at a 20% PEG concentration. We observed accelerated fusion for higher fluid velocities. Until this study, it was common sense that fusion is one-directional, i.e., once two cells are fused into one cell, they stay fused. Here, we present for the first time the reversible fusion of protoplasts. Our microfluidic device paves the way to a deeper understanding of the kinetics and processes of cell fusion.

13.
Biochem J ; 448(2): 243-51, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22943363

RESUMEN

ATP-hydrolysis and proton pumping by the V-ATPase (vacuolar proton-translocating ATPase) are subject to redox regulation in mammals, yeast and plants. Oxidative inhibition of the V-ATPase is ascribed to disulfide-bond formation between conserved cysteine residues at the catalytic site of subunit A. Subunits containing amino acid substitutions of one of three conserved cysteine residues of VHA-A were expressed in a vha-A null mutant background in Arabidopsis. In vitro activity measurements revealed a complete absence of oxidative inhibition in the transgenic line expressing VHA-A C256S, confirming that Cys(256) is necessary for redox regulation. In contrast, oxidative inhibition was unaffected in plants expressing VHA-A C279S and VHA-A C535S, indicating that disulfide bridges involving these cysteine residues are not essential for oxidative inhibition. In vivo data suggest that oxidative inhibition might not represent a general regulatory mechanism in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia Conservada , Cisteína/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Técnicas de Placa-Clamp , Plantas Modificadas Genéticamente , Conformación Proteica , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
14.
J Biol Chem ; 286(44): 38478-38487, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21917930

RESUMEN

The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.


Asunto(s)
Proteínas Portadoras/química , Proteínas Nucleares/química , Empalmosomas/metabolismo , Biofisica/métodos , Calorimetría/métodos , Proteínas Portadoras/metabolismo , Clonación Molecular , Glutatión Transferasa/metabolismo , Humanos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Modelos Estadísticos , Proteínas Nucleares/metabolismo , Prolina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Termodinámica
15.
J Biol Chem ; 286(31): 27515-27, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21632542

RESUMEN

Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism. Using GFP fusion, AtGrxC5 isoform, present exclusively in Brassicaceae, was shown to be localized in chloroplasts. A comparison of the biochemical, structural, and spectroscopic properties of Arabidopsis GrxC5 (WCSYC active site) with poplar GrxS12 (WCSYS active site), a chloroplastic paralog, indicated that, contrary to the solely apomonomeric GrxS12 isoform, AtGrxC5 exists as two forms when expressed in Escherichia coli. The monomeric apoprotein possesses deglutathionylation activity mediating the recycling of plastidial methionine sulfoxide reductase B1 and peroxiredoxin IIE, whereas the dimeric holoprotein incorporates a [2Fe-2S] cluster. Site-directed mutagenesis experiments and resolution of the x-ray crystal structure of AtGrxC5 in its holoform revealed that, although not involved in its ligation, the presence of the second active site cysteine (Cys(32)) is required for cluster formation. In addition, thiol titrations, fluorescence measurements, and mass spectrometry analyses showed that, despite the presence of a dithiol active site, AtGrxC5 does not form any inter- or intramolecular disulfide bond and that its activity exclusively relies on a monothiol mechanism.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/genética , Clonación Molecular , Cristalografía por Rayos X , Glutarredoxinas/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray , Fracciones Subcelulares/metabolismo
16.
Front Plant Sci ; 13: 931777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845650

RESUMEN

V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.

17.
Plants (Basel) ; 11(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35161331

RESUMEN

More than 95,000 protein-protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002-2021. These protein-protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein-protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35564539

RESUMEN

Natural and anthropogenic electromagnetic fields (EMFs) are ubiquitous in the environment and interfere with all biological organisms including plants. Particularly the quality and quantity of alternating EMFs from anthropogenic sources are increasing due to the implementation of novel technologies. There is a significant interest in exploring the impact of EMFs (similar to those emitted from battery chargers of electric cars) on plants. The model plant Arabidopsis thaliana was exposed to a composite alternating EMF program for 48 h and scrutinized for molecular alterations using photosynthetic performance, metabolite profiling, and RNA sequencing followed by qRT-PCR validation. Clear differences in the photosynthetic parameters between the treated and control plants indicated either lower nonphotochemical quenching or higher reduction of the plastoquinone pool or both. Transcriptome analysis by RNA sequencing revealed alterations in transcript amounts upon EMF exposure; however, the gene ontology groups of, e.g., chloroplast stroma, thylakoids, and envelope were underrepresented. Quantitative real-time PCR validated deregulation of some selected transcripts. More profound were the readjustments in metabolite pool sizes with variations in photosynthetic and central energy metabolism. These findings together with the invariable phenotype indicate efficient adjustment of the physiological state of the EMF-treated plants, suggesting testing for more challenging growth conditions in future experiments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aclimatación/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Campos Electromagnéticos , Luz , Fotosíntesis
19.
Plant Cell Physiol ; 52(5): 946-56, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21474463

RESUMEN

The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.


Asunto(s)
Ácidos/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Metabolismo Energético , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Desoxiglucosa/farmacología , Metabolismo Energético/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Isoenzimas/metabolismo , Células del Mesófilo/citología , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Vacuolas/efectos de los fármacos
20.
Hum Reprod ; 26(7): 1843-59, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21558076

RESUMEN

BACKGROUND: Highly reactive carbonyl compounds formed during glycolysis, such as methylglyoxal (MG), can lead to the formation of 'advanced glycation end products' (AGE) and carbonyl stress. Toxic AGEs are suspected to accumulate and play a role in reducing quality and developmental potential of mammalian oocytes of aged females and in PCOS and diabetic patients. Whether and how MG and AGE affect young and aged oocytes at the cellular level is unknown. METHODS: The study consists of three parts. In Part A expression of MG-detoxifying enzymes glyoxalases 1 and 2 was analysed by RT-PCR at different stages of maturation in denuded oocytes (DO), cumulus-enclosed oocytes (CEO) and metaphase (M)II oocytes of the CD-1 mouse to obtain information on stage-specific susceptibility to carbonyl stress. DO and CEO from young and aged females and from stimulated cycles were exposed to MG during maturation in vitro to assess also age-related changes in sensitivity to carbonyl stress induced by MG. Induction of apoptosis by MG on in vitro maturing DO was assessed by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling test. In Part B of the study, DO from large antral follicles of ovaries of adult, young MF-1 mice in late diestrous were exposed to MG to assess direct influences of MG and AGEs formed during continuous exposure to MG on rate and kinetics of maturation to MII, on DNA integrity (by γ-H2AX staining) in the germinal vesicle (GV) stage, and on spindle formation and chromosome alignment (by tubulin and pericentrin immunofluorescence and polarization microscopy), and chromosome segregation (by C-banding) during in vitro maturation. Since MG and AGEs can affect functionality of mitochondria in Part C, mitochondrial distribution and membrane potential was studied using JC-1 probe. Expression of a redox-sensitive mito-Grx1-roGFP2 protein in mitochondria of maturing oocytes by confocal laser scanning microscopy was employed to determine the inner mitochondrial glutathion (GSH)/glutathion disulfide (GSSG)-dependent redox potential. RESULTS: Part A revealed that mRNA for glyoxalases decreases during meiotic maturation. Importantly, cumulus from aged mice in CEO obtained from stimulated cycles does not protect oocytes efficiently from MG-induced meiotic arrest during in vitro maturation. Part B showed that the MG-induced meiotic delay or arrest is associated with significant rises in spindle aberrations, chromosome congression failure and aberrant telophase I in oocytes. MG exposure of meiotically arrested GV-stage oocytes significantly increases the numbers of γ-H2AX spots in the nucleus suggesting increased DNA damage, while MG exposure during maturation affects chromatin condensation and induces chromosome lagging at anaphase I. Moreover, Part C revealed that carbonyl stress by chronic exposure to MG is associated with delays in changes in mitochondrial distribution and altered inner-mitochondrial GSH/GSSG redox potential, which might be particularly relevant for cytoskeletal dynamics as well as processes after fertilization. Sensitivity to a meiotic block by MG appears dependent on the genetic background. CONCLUSIONS: The sensitivity to carbonyl stress by MG appears to increase with maternal age. Since MG-exposure induces DNA damage, meiotic delay, spindle aberrations, anaphase I lagging and epimutation, aged oocytes are particularly at risk for such disturbances in the absence of efficient protection by cumulus. Furthermore, disturbances in mitochondrial distribution and redox regulation may be especially critical for fertilization and developmental competence of oocytes exposed to MG and carbonyl stress before or during maturation, for instance, in aged females, or in PCOS or diabetic patients, in agreement with recent suggestions of correlations between poor follicular and embryonic development, lower pregnancy rate and presence of toxic AGEs in serum, irrespective of age.


Asunto(s)
Daño del ADN , Mitocondrias/efectos de los fármacos , Oocitos/fisiología , Piruvaldehído/farmacología , Huso Acromático/efectos de los fármacos , Estrés Fisiológico , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Femenino , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Ratones , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oxidación-Reducción , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA