Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

2.
J Evol Biol ; 36(5): 743-752, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951311

RESUMEN

We used European geometrid moths (>630 species) as a model group to investigate how life history traits linked to larval host plant use (i.e., diet breadth and host-plant growth form) and seasonal life cycle (i.e., voltinism, overwintering stage and caterpillar phenology) are related to adult body size in holometabolous insect herbivores. To do so, we applied phylogenetic comparative methods to account for shared evolutionary history among herbivore species. We further categorized larval diet breadth based on the phylogenetic structure of utilized host plant genera. Our results indicate that species associated with woody plants are, on average, larger than herb feeders and increase in size with increasing diet breadth. Obligatorily univoltine species are larger than multivoltine species, and attain larger sizes when their larvae occur exclusively in the early season. Furthermore, the adult body size is significantly smaller in species that overwinter in the pupal stage compared to those that overwinter as eggs or caterpillars. In summary, our results indicate that the ecological niche of holometabolous insect herbivores is strongly interrelated with body size at maturity.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Estaciones del Año , Filogenia , Larva , Plantas , Tamaño Corporal , Herbivoria
3.
Ecol Appl ; 33(8): e2921, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776039

RESUMEN

Averting climate change-induced forest diebacks increasingly relies on tree species planted outside of their natural range and on the addition of non-native tree species to mixed-species forests. However, the consequences of such changes for associated biodiversity remain poorly understood, especially for the forest canopy as a largely understudied forest stratum. Here, we used flight interception traps and a metabarcoding approach to study the taxonomic and functional (trophic guilds) composition and taxon richness of canopy arthropods. We sampled 15 monospecific and mixed stands of native European beech, native Norway spruce-planted outside its natural range-and non-native Douglas fir in northwest Germany. We found that the diversity of arthropods was lower in non-native Douglas fir compared with native beech stands. Taxon richness of herbivores was reduced by both conifer species. Other functional guilds, however, were not affected by stand type. Arthropod composition differed strongly between native broadleaved beech and monospecific coniferous (native spruce or non-native Douglas fir) stands, with less pronounced differences between the native and non-native conifers. Beech-conifer mixtures consistently hosted intermediate arthropod diversity and community composition compared with the respective monospecific stands. Moreover, arthropod diversity had a positive relationship with the number of canopy microhabitats. Our study shows that considering arthropod taxa of multiple functional groups reveals the multifaceted impact of non-native tree species on forest canopy arthropod communities. Contrasting with previous studies that primarily focused on the forest floor, we found that native beech hosts a rich diversity of arthropods, compared with lower diversity and distinct communities in economically attractive, and especially in non-native, conifers with few canopy microhabitats. Broadleaf-conifer mixtures did not perform better than native beech stands, but mitigated the negative effects of conifers, making such mixtures a compromise to foster both forest-associated diversity and economic yield.


Asunto(s)
Artrópodos , Fagus , Picea , Pseudotsuga , Tracheophyta , Animales , Biodiversidad , Alemania , Herbivoria
4.
Oecologia ; 203(1-2): 37-51, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709958

RESUMEN

Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.


Asunto(s)
Picea , Arañas , Animales , Árboles , Bosques , Noruega , Biodiversidad
5.
Ecol Lett ; 25(4): 729-739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958165

RESUMEN

Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.


Asunto(s)
Herbivoria , Árboles , Animales , Bosques , Insectos , Hojas de la Planta , Conducta Predatoria
6.
J Chem Ecol ; 47(1): 99-111, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33180276

RESUMEN

Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.


Asunto(s)
Fagales/metabolismo , Herbivoria , Defensa de la Planta contra la Herbivoria , Árboles/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Fagales/química , Insectos , Análisis de Componente Principal , Tilia/química , Tilia/metabolismo , Árboles/química , Compuestos Orgánicos Volátiles/análisis
7.
Ecol Lett ; 23(10): 1499-1510, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808457

RESUMEN

In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.


Asunto(s)
Artrópodos , Arañas , Animales , Herbivoria , Conducta Predatoria , Árboles
8.
Oecologia ; 192(2): 501-514, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872269

RESUMEN

Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Bosques , América del Norte , Árboles
9.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-26286230

RESUMEN

The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts.


Asunto(s)
Herbivoria , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/parasitología , Avispas/fisiología , Animales , Ecuador , Larva/clasificación , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/crecimiento & desarrollo , Peperomia/crecimiento & desarrollo , Especificidad de la Especie
10.
Evolution ; 78(6): 1174-1182, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536734

RESUMEN

Although diurnality is widespread across Lepidoptera and has evolved many times independently, its causes and ecological implications are yet poorly understood. The "Salient Aroma Hypothesis" (SAH) postulates that diurnal insect herbivores are overall more specialized in dietary breadth than species active at night. It is furthermore assumed that diurnality evolved more frequently in species that live in cooler environments. Using European geometrid moths as a model group, we tested whether diurnal activity in adults is associated with an increased larval dietary breadth as predicted by the SAH. We further investigated whether species that exclusively occur in colder regions or whose flight period is restricted to cool seasons are more likely to exhibit a diurnal flight activity. Contrary to expectation, we found no consistent differences in larval dietary breadth between diurnal and nocturnal species, and thus no support for the SAH. Diurnal activity occurred more frequently in species restricted to cold regions but not in species restricted to cool seasons. We conclude that diurnality could serve as an advantageous adaptation in cold environments, depending on further factors such as resource availability or predation pressure, but has no immediate consequences for larval dietary breadth.


Asunto(s)
Dieta , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Larva/fisiología , Ritmo Circadiano , Vuelo Animal , Estaciones del Año , Odorantes/análisis
11.
Ecol Evol ; 13(5): e10123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37255847

RESUMEN

Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization. In a greenhouse experiment, we exposed 149 plants of Salix fragilis (Linnaeus, 1753) to 22 herbivore species naturally associated with this host. The insects belonged to four orders (Coleoptera, Lepidoptera, Hemiptera, and Hymenoptera), three feeding guilds (external leaf-chewers, leaf-tying chewers, and sap-sucking), and included both dietary specialists and generalists. Following herbivory, we quantified induced changes in volatiles and nonvolatile leaf metabolites. We performed multivariate analyses to assess the correlation between herbivore order, feeding guild, dietary specialization, chewing damage by herbivores, and induced responses. The volatile composition was best explained by chewing damage and insect order, with Coleoptera and Lepidoptera eliciting significantly different responses. Furthermore, we recorded significant differences in elicited volatiles among some species within the two orders. Variation in nonvolatile leaf metabolites was mainly explained by the presence of insects, as plants exposed to herbivores showed significantly different metabolites from controls. Herbivore order also played a role to some extent, with beetles eliciting different responses than other herbivores. The induction of volatile and nonvolatile leaf metabolites shows different levels of specificity. The specificity in volatiles could potentially serve as an important cue to specialized predators or parasitoids, increasing the efficacy of volatiles as indirect defenses. By contrast, the induction of nonvolatile leaf metabolites was largely unaffected by herbivore identity. Most nonvolatile metabolites were downregulated, possibly indicating that plants redirected their resources from leaves in response to herbivory. Our results demonstrate how diverse responses to herbivores can contribute to the diversity of plant defensive strategies.

12.
Ecol Evol ; 10(24): 14137-14151, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33732431

RESUMEN

Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.

13.
PLoS One ; 14(10): e0222119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31644586

RESUMEN

Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites.


Asunto(s)
Artrópodos/fisiología , Interacciones Huésped-Parásitos , Plantas/parasitología , Animales , Bosques , Larva/fisiología , Árboles/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA