Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(34): e202406742, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38842522

RESUMEN

A selective deelectronation reagent with very high potential of +2.00 (solution)/+2.41 V (solid-state) vs. Fc+/0 and based on a room temperature stable perfluoronaphthalene (naphthaleneF) radical cation salt was developed and applied. The solid-state deelectronation of commercial naphthaleneF with [NO]+[F{Al(ORF)3}2]- generates [naphthaleneF]+⋅[F{Al(ORF)3}2]- (ORF=OC(CF3)3) in gram scale. Thermochemical analysis unravels the solid-state deelectronation potential of the starting [NO]+-reagent to be +2.34 V vs. Fc+/0 with [F{Al(ORF)3}2]- counterion, but only +1.14 V vs. Fc+/0 with the small [SbF6]- ion. Selective reactions demonstrate the selectivity of [naphthaleneF]+⋅ for deelectronation of a multitude of organ(ometall)ic molecules and elements in solution: providing the molecular structures of the acene dications [tetracene]2+, [pentacene]2+ or spectroscopic evidence for the carbonyl complex of the ferrocene dication [Fc(CO)]2+, the [P9]+ cation from white phosphorus, the solvent-free copper(I) salt starting from copper metal and the dicationic Fe(IV)-scorpionate complex [Fe(sc)2]2+.

2.
Chemistry ; 29(34): e202300908, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37015001

RESUMEN

The title silver(I) complex salts [Ag{Re2 (CO)10 }{Re(CO)5 }2 ]+ [Al(ORF )4 ]- (AgRe4 ; ORF =-OC(CF3 )3 ) and [Ag{Ir4 (CO)12 }2 ]+ [Al(ORF )4 ]- (AgIr8 ) form upon reaction of Ag+ [Al(ORF )4 ]- and the transition metal carbonyls (TMCs) Re2 (CO)10 and Ir4 (CO)12 respectively. The solid-state structure of the AgRe4 cluster shows an unexpected asymmetric coordination motif, wherein the silver(I) cation has inserted into the Re-Re bond of one Re2 (CO)10 moiety, while the other dirhenium carbonyl coordinates only over one metal atom towards the silver(I) cation. The AgIr8 cluster is formed by the edge-on coordination of two Ir4 tetrahedra and the silver cation in a D2 symmetric fashion with a torsion angle of 46.5°. QTAIM analysis shows bond paths between the silver atom and the nearby metal atoms in all cases, whereas only the non-inserted Re2 (CO)10 moiety shows additional bond paths between the carbonyl ligands and the silver cation. In addition, the insertion of the Ag+ cation into the Re-Re bond in Re2 (CO)10 removes the bond path between the two rhenium atoms. The EDA-NOCV analysis suggests an increase of the interaction energy between the silver(I) cation and the respective metal carbonyls from the metal centered transition metal carbonyl (TMC) donors W(CO)6

3.
Chemistry ; 29(42): e202300909, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37194623

RESUMEN

The unsubstituted acenium radical cations (ARCs) are extremely sensitive and were hitherto only studied in situ, i. e. in the gas phase, as dilute solutions in strong acids or by matrix isolation spectroscopy at about 10 K. In this study, room temperature stable ARC salts with the weakly coordinating anion [F{Al(ORF )3 }2 ]- (ORF =-OC(CF3 )3 ) supported by the weakly coordinating solvent 1,2,3,4-tetrafluorobenzene (TFB) were prepared and structurally, electrochemically and spectroscopically characterized. Reaction of the neutral acenes with Ag+ [F{Al(ORF )3 }2 ]- led, non-innocent,[54] to intermediate [Ag2 (acene)2 ]2+ complexes, which decompose over time to Ag0 and the corresponding (impure) ARC salts. By contrast, direct deelectronation with the recently developed innocent[54] deelectronator radical cation salt [anthraceneHal ]+⋅ [F{Al(ORF )3 }2 ]- led to phase-pure products [acene]+⋅ [F{Al(ORF )3 }2 ]- (anthraceneHal =9,10-dichlorooctafluoroanthracene; acene=anthra-, tetra-, pentacene). For the first time, a homogenous set of spectroscopic data on analytically pure ARC salts was obtained. In addition, cyclovoltammetric measurements of the acenes connected the potentials in solution with those in the gas-phase. Hence, the data complement the existing isolated gas-phase, strong acid or matrix isolation studies. A first entry to follow-up chemistry of the acenium radical cations as ligand forming oxidizers was demonstrated by reaction with 1 / 2 ${{ 1/2 }}$ Co2 (CO)8 giving [Co(anthracene)(CO)2 ]+ .

4.
Nat Commun ; 15(1): 6721, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112470

RESUMEN

While the development of weakly coordinating anions (WCAs) received much attention, the progress on weakly coordinating and inert solvents almost stagnated. Here we study the effect of strategic F-substitution on the solvent properties of fluorobenzenes C6FxH6-x (xFB, x = 1-5). Asymmetric fluorination leads to dielectric constants as high as 22.1 for 3FB that exceeds acetone (20.7). Combined with the WCAs [Al(ORF)4]- or [(FRO)3Al-F-Al(ORF)3]- (RF = C(CF3)3), the xFB solvents push the potentials of Ag+ and NO+ ions to +1.50/+1.52 V vs. Fc+/Fc. The xFB/WCA-system has electrochemical xFB stability windows that exceed 5 V for all xFBs with positive upper limits between +1.82 V (1FB) and +2.67 V (5FB) vs. Fc+/Fc. High-level ab initio calculations with inclusion of solvation energies show that these high potentials result from weak interactions of the ions with solvent and counterion. To access the available positive xFB potential range with stable reagents, the innocent deelectronator salts [anthraceneF]+∙[WCA]- and [phenanthreneF]+∙[WCA]- with potentials of +1.47 and +1.89 V vs. Fc+/Fc are introduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA