Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 212: 111960, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513481

RESUMEN

The development of low arsenic-accumulating varieties for the contaminated areas is one of the best options for reducing the dietary exposure of arsenic to human population through rice. In this study, grain-arsenic content in one hundred genotypes revealed a large variation ranging from 0.05 mg/kg to 0.49 mg/kg. Compared to high accumulating variety, Shatabdi, 6-8 times the transcript upregulation of Arsenic sequestering ATP binding cassette C1 type gene (ABCC1), was observed in first internode of low accumulating variety Gobindabhog when 5 mg/kg of arsenite was present in soil. A comparison of the genomic sequence of OsABCC1 identified 8 SNPs between the two genotypes; 5 in introns and 3 silent mutations in exons. We identified a PCR based co-dominant marker targeting an SNP (T/G) between the two genotypes, which clearly distinguished 100 genotypes into low (mean 0.14 mg/kg) and high (mean 0.35 mg/kg) accumulating groups. All aromatic genotypes, either long or small grain, carry the Gobindabhog-type ABCC1 allele and are low accumulators of arsenic. Gobindabhog allele carrying 62 RILs and NILs showed almost 40-50% less As-accumulation in grains relative to 84 RILs and NILs carrying Shatabdi type ABCC1-allele. The marker will be useful in introgression of low accumulating allele of OsABCC1 into high yielding photoperiod insensitive varietal backgrounds more easily and accurately.


Asunto(s)
Arsénico/metabolismo , Oryza/genética , Contaminantes del Suelo/metabolismo , Arsénico/análisis , Arsenitos , Grano Comestible/metabolismo , Genotipo , Humanos , Oryza/metabolismo , Reacción en Cadena de la Polimerasa , Suelo/química , Contaminantes del Suelo/análisis
2.
J Genet ; 97(1): 25-33, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29666322

RESUMEN

Okra's (Abelmoschus esculentus (L.) Moench) commercial cultivation is threatened in the tropics due to high incidence of yellow vein mosaic virus (YVMV) disease. Okra geneticists across the world tried to understand the inheritance pattern of YVMV disease tolerance without much success. Therefore, the inheritance pattern of YVMV disease in okra was revisited by employing sixgenerations (P1, P2, F1, F2, BC1 and BC2) of four selected crosses (one tolerant × tolerant, two tolerant × susceptible and one susceptible × susceptible) using two tolerant (BCO-1 and Lal Bhendi) and two susceptible (Japanese Jhar Bhendi and PAN 2127) genotypes. Qualitative genetic analysis was done on the basis of segregation pattern of tolerant and susceptible plants in F2 and backcross generations of all the four crosses. It revealed that a single dominant gene along with some minor factors governed the disease tolerant trait in both the tolerant parents used. However, it was observed that genes governing disease tolerance identified in both the tolerant variety used was different. It could be concluded that the gene governing YVMV disease tolerance in okra wasgenotype specific. Further, duplicate gene action as evident from an approximate ratio of 15:1 (tolerant:susceptible) in the F2 population in the cross of two tolerant varieties gave a scope of increasing the tolerance level of the hybrid plants when both the tolerant genes are brought together. However, generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease tolerance. Thus, the present study confirms that a complicated genetic inheritance pattern is involved in the disease tolerance against YVMV trait. The major tolerance genes could be transferred to other okra varieties, but the tolerance breaking virus strains might not allow them to achieve tolerance in stable condition. Therefore, accumulation of additional genes may be needed for a sustainable tolerance phenotype in okra.


Asunto(s)
Abelmoschus/genética , Abelmoschus/virología , Adaptación Fisiológica/genética , Virus del Mosaico/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Segregación Cromosómica/genética , Cruzamientos Genéticos , Genotipo , Modelos Genéticos , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA