Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 223: 185-195, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929074

RESUMEN

This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater.


Asunto(s)
Colorantes/aislamiento & purificación , Pseudomonas , Industria Textil , Biodegradación Ambiental , Ceniza del Carbón , Purificación del Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-37608172

RESUMEN

Coconut (Cocos nucifera) coir is an abundant agricultural waste prevalent worldwide. Utilization of this waste has been carried out in this study by obtaining nanocellulose (NC) fibres for wastewater remediation purposes. Nanocellulose was obtained from coconut coir using bleaching and acid-alkali treatments followed by ultrasonication and lyophilization. The structural, compositional, surface and thermal properties of the synthesized material were identified using transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption/desorption, differential thermal (DT) and derivative thermogravimetric (DTG) analyses. These analyses confirmed the synthesized NC with enhanced thermal stability and porosity which was further used for adsorption process. After synthesis, NC was used for the removal of cationic dye safranin-O from water under ambient conditions through batch adsorption studies. The batch adsorption studies revealed that at 10 ppm of dye concentration, above 99% removal was achieved by 100 mg dosage of NC within 4.5 h at room temperature with qe (maximum adsorption capacity at equilibrium) value of around 83 mg g-1. The corresponding adsorption process fitted well with Langmuir isotherm and pseudo-second order kinetics. The primary mode of adsorption from the thermodynamic studies was found to be chemisorption. The adsorption process was achieved through response surface methodology (RSM) study which revealed that at optimized conditions of temperature 35 °C with a dose of 137.50 mg and contact time of 180 min, above 99% of dye (conc. 0.01 mg mL-1) was removed. In addition, the adsorbent can be recycled up to six cycles without any significant loss of its adsorption capacity. The present comprehensive study revealed that a greener eco-friendly synthesis of NC from waste material coconut coir was an effective nanoadsorbent for dye removal with high efficacy. This surely opens up opportunities to develop sustainable protocols for efficient environmental remediation.

3.
3 Biotech ; 8(4): 192, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29576998

RESUMEN

The present study investigated the removal of azo dye (crystal violet) by adsorption (using a low-cost adsorbent fly ash), biodegradation (using bacterial species, Pseudomonas sp.), and an integrated approach of sorption coupled with biodegradation (using fly ash immobilized with Pseudomonas sp.) on a comparative scale. To ascertain immobilization of bacteria on fly ash, immobilized bacterial cells were characterized by energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier-transform-infrared spectroscopy, and fluorescence microscopy. Batch studies were conducted for optimization of the process parameters for ensuring maximum dye removal. The optimum pH, temperature, and initial dye concentration for the highest percentage of dye removal were found to be pH 7, 37 °C, and 50 mg/L in all the three cases. Under optimized conditions, the highest percentage of dye removal was found to be 89.24, 79.64, and 99.04% for biodegradation, sorption, and integrated approach of sorption and biodegradation, respectively. Finally, phytotoxicity studies carried out with the treated water on Cicer arietinum seeds also carried proved that these processes and the adsorbent did not exert any toxic effects on the seeds. Artificial neural network modeling revealed a close interaction between theoretically predicted and experimentally obtained results and with an error of around 1.1%. Thus, this novel, environmentally sustainable and economically viable technique may be applied for effective removal of crystal violet from industrial wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA