Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272290

RESUMEN

The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.


Asunto(s)
Cadherinas/metabolismo , Cateninas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Adherentes/metabolismo , Anticuerpos Monoclonales/metabolismo , Adhesión Celular , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación/genética , Unión Proteica , Transporte de Proteínas , Proteínas Supresoras de Tumor/metabolismo
2.
J Cell Sci ; 132(16)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31331966

RESUMEN

Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Virus del Sarampión/metabolismo , Nectinas/metabolismo , Internalización del Virus , Transporte Biológico Activo/genética , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Línea Celular , Humanos , Virus del Sarampión/genética , Nectinas/genética
3.
Acc Chem Res ; 47(4): 1349-58, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24661097

RESUMEN

Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.


Asunto(s)
Compuestos de Boro/química , Boro/química , Modelos Químicos , Benceno , Hidrocarburos/química , Estructura Molecular , Nanotubos/química , Espectroscopía de Fotoelectrones , Elementos de Transición
4.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895375

RESUMEN

In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.

5.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712280

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

6.
J Mol Biol ; 436(16): 168640, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844044

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how Protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

7.
J Mol Biol ; 435(15): 168187, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355034

RESUMEN

The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used. Overall, we find that FEP performance is superior to that of other computational approaches examined as determined by agreement with experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite the significant computational cost, FEP calculations may offer an effective strategy to understand the effects of interfacial mutations on protein-protein binding affinities and, hence, in a variety of practical applications such as the optimization of neutralizing antibodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Mutación , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Dominios Proteicos
8.
J Am Chem Soc ; 134(43): 18065-73, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23030415

RESUMEN

Clusters of boron atoms exhibit intriguing size-dependent structures and chemical bonding that are different from bulk boron and may lead to new boron-based nanostructures. We report a combined photoelectron spectroscopic and ab initio study of the 22- and 23-atom boron clusters. The joint experimental and theoretical investigation shows that B(22)(-) and B(23)(-) possess quasi-planar and planar structures, respectively. The quasi-planar B(22)(-) consists of fourteen peripheral atoms and eight interior atoms in a slightly buckled triangular lattice. Chemical bonding analyses of the closed-shell B(22)(2-) species reveal seven delocalized π orbitals, which are similar to those in anthracene. B(23)(-) is a perfectly planar and heart-shaped cluster with a pentagonal cavity and a π-bonding pattern similar to that in phenanthrene. Thus, B(22)(-) and B(23)(-), the largest negatively charged boron clusters that have been characterized experimentally to date, can be viewed as all-boron analogues of anthracene and phenanthrene, respectively. The current work shows not only that boron clusters are planar at very large sizes but also that they continue to yield surprises and novel chemical bonding analogous to specific polycyclic aromatic hydrocarbons.


Asunto(s)
Antracenos/química , Compuestos de Boro/química , Fenantrenos/química , Modelos Moleculares , Espectroscopía de Fotoelectrones , Teoría Cuántica
9.
Phys Chem Chem Phys ; 14(47): 16326-30, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23132234

RESUMEN

The potential energy surfaces of the Na(Si(5-n)(BH)(n))(-) and Si(5-n)(BH)(n)(2-) (n = 0-5) systems have been explored in detail. We established that all the global minimum structures of anionic and dianionic systems can be obtained by substitution of one or more silicon atoms of the global minima of NaSi(5)(-) and Si(5)(2-) for B-H units. The conservation of the overall structure upon isoelectronic substitution was shown to be due to the preservation of the chemical bonding pattern. Theoretical VDEs were calculated for all of the sodiated Na(Si(5-n)(BH)(n))(-) (n = 0-5) systems to facilitate their experimental detection.

10.
J Chem Phys ; 136(10): 104310, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423841

RESUMEN

The structures and chemical bonding of the B(21)(-) cluster have been investigated by a combined photoelectron spectroscopy and ab initio study. The photoelectron spectrum at 193 nm revealed a very high adiabatic electron binding energy of 4.38 eV for B(21)(-) and a congested spectral pattern. Extensive global minimum searches were conducted using two different methods, followed by high-level calculations of the low-lying isomers. The global minimum of B(21)(-) was found to be a quasiplanar structure with the next low-lying planar isomer only 1.9 kcal/mol higher in energy at the CCSD(T)/6-311-G* level of theory. The calculated vertical detachment energies for the two isomers were found to be in good agreement with the experimental spectrum, suggesting that they were both present experimentally and contributed to the observed spectrum. Chemical bonding analyses showed that both isomers consist of a 14-atom periphery, which is bonded by classical two-center two-electron bonds, and seven interior atoms in the planar structures. A localized two-center two-electron bond is found in the interior of the two planar isomers, in addition to delocalized multi-center σ and π bonds. The structures and the delocalized bonding of the two lowest lying isomers of B(21)(-) were found to be similar to those in the two lowest energy isomers in B(19)(-).

11.
Angew Chem Int Ed Engl ; 51(34): 8512-5, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22777910

RESUMEN

Revved-up rotary: A molecular Wankel motor, the dual-ring structure B(13)(+), is driven by circularly-polarized infrared electromagnetic radiation. Calculations show that this illumination leads to a guided unidirectional rotation of the outer ring, which is achieved with rotational frequency of the order of 300 GHz.

12.
Cell Rep ; 39(1): 110618, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385751

RESUMEN

Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons. We design mutations that systematically change interaction affinity and analyze function in vivo. Reducing affinity causes loss-of-function phenotypes whose severity scales with the magnitude of the change. Synaptic targeting is more sensitive to affinity reduction than is cell survival. Increasing affinity rescues neurons that would normally be culled by apoptosis. By manipulating CAM expression together with affinity, we show that the key parameter controlling circuit assembly is surface avidity, which is the strength of adherence between cell surfaces. We conclude that CAM binding affinities and expression levels are finely tuned for function during development.


Asunto(s)
Proteínas de Drosophila , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Supervivencia Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas/metabolismo
13.
J Am Chem Soc ; 133(22): 8646-53, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21520972

RESUMEN

Small boron clusters have been shown to be planar from a series of combined photoelectron spectroscopy and theoretical studies. However, a number of boron clusters are quasiplanar, such as B(7)(-) and B(12)(-). To elucidate the nature of the nonplanarity in these clusters, we have investigated the electronic structure and chemical bonding of two isoelectronic Al-doped boron clusters, AlB(6)(-) and AlB(11)(-). Vibrationally resolved photoelectron spectra were obtained for AlB(6)(-), resulting in an accurate electron affinity (EA) for AlB(6) of 2.49 ± 0.03 eV. The photoelectron spectra of AlB(11)(-) revealed the presence of two isomers with EAs of 2.16 ± 0.03 and 2.33 ± 0.03 eV, respectively. Global minimum structures of both AlB(6)(-) and AlB(11)(-) were established from unbiased searches and comparison with the experimental data. The global minimum of AlB(6)(-) is nearly planar with a central B atom and an AlB(5) six membered ring, in contrast to that of B(7)(-), which possesses a C(2v) structure with a large distortion from planarity. Two nearly degenerate structures were found for AlB(11)(-) competing for the global minimum, in agreement with the experimental observation. One of these isomers with the lower EA can be viewed as substituting a peripheral B atom by Al in B(12)(-), which has a bowl shape with a B(9) outer ring and an out-of-plane inner B(3) triangle. The second isomer of AlB(11)(-) can be viewed as an Al atom interacting with a B(11)(-) cluster. Both isomers of AlB(11)(-) are perfectly planar. It is shown that Al substitution of a peripheral B atom in B(7)(-) and B(12)(-) induces planarization by slightly expanding the outer ring due to the larger size of Al.

14.
Inorg Chem ; 50(3): 1039-46, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21190332

RESUMEN

Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(µ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.

15.
Phys Chem Chem Phys ; 13(24): 11575-8, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21603683

RESUMEN

Boron could be the next element after carbon capable of forming 2D-materials similar to graphene. Theoretical calculations predict that the most stable planar all-boron structure is the so-called α-sheet. The mysterious structure of the α-sheet with peculiar distribution of filled and empty hexagons is rationalized in terms of chemical bonding. We show that the hexagon holes serve as scavengers of extra electrons from the filled hexagons. This work could advance rational design of all-boron nanomaterials.

16.
J Chem Phys ; 134(22): 224304, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21682511

RESUMEN

We have investigated the structural and electronic properties of the B(17)(-) and B(18)(-) clusters using photoelectron spectroscopy (PES) and ab initio calculations. The adiabatic electron detachment energies of B(17)(-) and B(18)(-) are measured to be 4.23 ± 0.02 and 3.53 ± 0.05 eV, respectively. Calculated electron detachment energies are compared with experimental data, confirming the presence of one planar C(2v) ((1)A(1)) isomer for B(17)(-) and two nearly isoenergetic quasi-planar C(3v) ((2)A(1)) and C(s) ((2)A') isomers for B(18)(-). The stability and planarity/quasi-planarity of B(17)(-) and B(18)(-) are ascribed to σ- and π-aromaticity. Chemical bonding analyses reveal that the nature of π-bonding in B(17)(-) and B(18)(-) is similar to that in the recently elucidated B(16)(2-) and B(19)(-) clusters, respectively. The planar B(17)(-) cluster can be considered as an all-boron analogue of naphthalene, whereas the π-bonding in the quasi-planar B(18)(-) is reminiscent of that in coronene.

17.
J Chem Phys ; 134(1): 014105, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21218995

RESUMEN

We report the experimental and theoretical characterization of neutral Si(6)X(12) (X = Cl, Br) molecules that contain D(3d) distorted six-member silicon rings due to a pseudo-Jahn-Teller (PJT) effect. Calculations show that filling the intervenient molecular orbitals with electron pairs of adduct suppresses the PJT effect in Si(6)X(12), with the Si(6) ring becoming planar (D(6h)) upon complex formation. The stabilizing role of electrostatic and covalent interactions between positively charged silicon atoms and chlorine atoms of the subject [Si(6)Cl(14)](2-) dianionic complexes is discussed. The reaction of Si(6)Cl(12) with a Lewis base (e.g., Cl(-)) to give planar [Si(6)Cl(14)](2-) dianionic complexes presents an experimental proof that suppression of the PJT effect is an effective strategy in restoring high Si(6) ring symmetry. Additionally, the proposed pathway for the PJT suppression has been proved by the synthesis and characterization of novel compounds containing planar Si(6) ring, namely, [(n)Bu(4)N](2)[Si(6)Cl(12)I(2)], [(n)Bu(4)N](2)[Si(6)Br(14)], and [(n)Bu(4)N](2)[Si(6)Br(12)I(2)]. This work represents the first demonstration that PJT effect suppression is useful in the rational design of materials with novel properties.


Asunto(s)
Teoría Cuántica , Silanos/química
18.
Phys Chem Chem Phys ; 12(38): 12050-4, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20725684

RESUMEN

A remarkable triple-decker sandwich complex [Pd(4)(µ(4)-C(9)H(9))(µ(4)-C(8)H(8))][BAr(f)(4)] (BAr(f)(4) = B{3,5-(CF(3))(2)(C(6)H(3))}(4)) composed of cyclononatetraenyl anion and cyclooctatetraene as "bread pieces" and square tetrapalladium dication as "meat" (Fig. 1a) has been synthesized recently [Murahashi et al., J. Am. Chem. Soc., 2009, 131, 9888]. This complex attracted our attention because of the presence of an almost perfect square sheet composed of four palladium atoms. Such a structure could be a sign of aromatic nature of chemical bonding as it was shown to be present in the square Al(4)(2-) cluster [Li et al., Science, 2001, 291, 859]. In this work we show that according to our chemical bonding analysis the bonding in the Pd(4)(2+) unit of [Pd(4)(µ(4)-C(9)H(9))(µ(4)-C(8)H(8))](+) is of δ-character among four palladium atoms, making the triple-decker sandwich complex the first synthesized compound identified as having δ-bonding in its cyclic building block when it's in solution or in a crystalline state.

19.
J Phys Chem A ; 114(42): 11070-7, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20373798

RESUMEN

Anion photoelectron spectra of Ga(x)N(y)(-) cluster anions, in which x = 4-12, y = 1 and x = 7-12, y = 2, were measured. Ab initio studies were conducted on Ga(x)N(y)(-) cluster anions in which x = 4-7, y = 1 and Ga(7)N(2)(-), providing their structures and electronic properties. The photoelectron spectra were interpreted in terms of the computational results. This allowed for identification of the isomers present in the beam experiments for specific Ga(x)N(-) cluster anions (x = 4-7). The unexpected presence of Ga(x)N(2)(-) species is also reported.

20.
Nat Commun ; 11(1): 2125, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358559

RESUMEN

Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Biológica , Drosophila , Proteínas de Drosophila/genética , Evolución Molecular , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA