Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 157: 105442, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246770

RESUMEN

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/genética , Interneuronas/metabolismo , Inhibición Neural/genética , Neurregulina-1/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Calbindina 2/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/patología , Expresión Génica , Haploinsuficiencia , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Interneuronas/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratones , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Receptor ErbB-4/genética , Ácido gamma-Aminobutírico/metabolismo
2.
Nat Commun ; 13(1): 5272, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071061

RESUMEN

Astrocytes are key elements of brain circuits that are involved in different aspects of the neuronal physiology relevant to brain functions. Although much effort is being made to understand how the biology of astrocytes affects brain circuits, astrocytic network heterogeneity and plasticity is still poorly defined. Here, we have combined structural and functional imaging of astrocyte activity recorded in mice using the Ca2+-modulated photoactivatable ratiometric integrator and specific optostimulation of glutamatergic pathways to map the functional neuron-astrocyte circuitries in the nucleus accumbens (NAc). We showed pathway-specific astrocytic responses induced by selective optostimulation of main inputs from the prefrontal cortex, basolateral amygdala, and ventral hippocampus. Furthermore, co-stimulation of glutamatergic pathways induced non-linear Ca2+-signaling integration, revealing integrative properties of NAc astrocytes. All these results demonstrate the existence of specific neuron-astrocyte circuits in the NAc, providing an insight to the understanding of how the NAc integrates information.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Animales , Astrocitos/metabolismo , Hipocampo/fisiología , Ratones , Neuronas/metabolismo , Núcleo Accumbens/metabolismo
3.
Nat Commun ; 11(1): 782, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034128

RESUMEN

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor expression in the mPFC-NAc pathway promotes the addiction-like phenotype. Our study unravels a new neurobiological mechanism underlying resilience and vulnerability to the development of food addiction, which could pave the way towards novel and efficient interventions for this disorder.


Asunto(s)
Adicción a la Comida/fisiopatología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Receptores de Dopamina D2/genética , Animales , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Adicción a la Comida/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones Noqueados , Vías Nerviosas/fisiología , Receptor Cannabinoide CB1/genética , Transmisión Sináptica , Regulación hacia Arriba
4.
Nat Commun ; 10(1): 2968, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273206

RESUMEN

NMDA receptor-dependent long-term depression (LTD) in the hippocampus is a well-known form of synaptic plasticity that has been linked to different cognitive functions. The core mechanism for this form of plasticity is thought to be entirely neuronal. However, we now demonstrate that astrocytic activity drives LTD at CA3-CA1 synapses. We have found that LTD induction enhances astrocyte-to-neuron communication mediated by glutamate, and that Ca2+ signaling and SNARE-dependent vesicular release from the astrocyte are required for LTD expression. In addition, using optogenetic techniques, we show that low-frequency astrocytic activation, in the absence of presynaptic activity, is sufficient to induce postsynaptic AMPA receptor removal and LTD expression. Using cell-type-specific gene deletion, we show that astrocytic p38α MAPK is required for the increased astrocytic glutamate release and astrocyte-to-neuron communication during low-frequency stimulation. Accordingly, removal of astrocytic (but not neuronal) p38α abolishes LTD expression. Finally, this mechanism modulates long-term memory in vivo.


Asunto(s)
Astrocitos/enzimología , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Optogenética , Técnicas de Placa-Clamp , Potenciales Sinápticos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA